41 resultados para Leonardo da Vinci (1452-1519)
Resumo:
Rapid tryptophan (Trp) depletion (RTD) has been reported to cause deterioration in the quality of decision making and impaired reversal learning, while leaving attentional set shifting relatively unimpaired. These findings have been attributed to a more powerful neuromodulatory effect of reduced 5-HT on ventral prefrontal cortex (PFC) than on dorsolateral PFC. In view of the limited number of reports, the aim of this study was to independently replicate these findings using the same test paradigms. Healthy human subjects without a personal or family history of affective disorder were assessed using a computerized decision making/gambling task and the CANTAB ID/ED attentional set-shifting task under Trp-depleted (n=17; nine males and eight females) or control (n=15; seven males and eight females) conditions, in a double-blind, randomized, parallel-group design. There was no significant effect of RTD on set shifting, reversal learning, risk taking, impulsivity, or subjective mood. However, RTD significantly altered decision making such that depleted subjects chose the more likely of two possible outcomes significantly more often than controls. This is in direct contrast to the previous report that subjects chose the more likely outcome significantly less often following RTD. In the terminology of that report, our result may be interpreted as improvement in the quality of decision making following RTD. This contrast between studies highlights the variability in the cognitive effects of RTD between apparently similar groups of healthy subjects, and suggests the need for future RTD studies to control for a range of personality, family history, and genetic factors that may be associated with 5-HT function.
Resumo:
In chloroform, [RuCl2(nbd)(py)(2)] (1) (nbd = norbornadiene; py = pyridine) reacts with 1,4-bis(diphenylphosphino)-1,2,3,4-tetramethyl-1,3-butadiene (1,2,3,4-Me-4-NUPHOS) to give the dimer [Ru2Cl3(eta(4)-1,2,3,4-Me-4-NUPHOS)(2)]Cl (2a), whereas, in THF [RuCl2(1,2,3,4-Me-4-NUPHOS)(PY)(2)] (3) is isolated as the sole product of reaction. Compound 2 exists as a 4:1 mixture of two noninterconverting isomers, the major with C, symmetry and the minor with either C, or C-2 symmetry. A single-crystal X-ray analysis of [Ru2Cl3 (eta(4)-1,2,3,4-Me-4-NUPHOS)(2)] [SbF6] (2b), the hexafluoroantimonate salt of 2a, revealed that the diphosphine coordinates in an unusual manner, as a eta(4)-six-electron donor, bonded through both P atoms and one of the double bonds of the butadiene tether. Compounds 2a and 3 react with 1,2-ethylenediamine (en) in THF to afford [RuCl2(1,2,3,4-Me-4-NUPHOS)(en)] (4), which rapidly dissociates a chloride ligand in chloroform to give [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)] [Cl] (5a). Complexes 4 and 5a cleanly and quantitatively interconvert in a solvent-dependent equilibrium, and in THF 5a readily adds chloride to displace the eta(2)-interaction and re-form 4. A single-crystal X-ray structure determination of [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)][ClO4] (5b) confirmed that the diphosphine coordinates in an eta(4)-manner as a facial six-electron donor with the eta(2)-coordinated double bond occupying the site trans to chloride. The eta(4)-bonding mode can be readily identified by the unusually high-field chemical shift associated with the phosphorus atom adjacent to the eta(2)-coordinated double bond. Complexes 2a, 2b, 4, and 5a form catalysts that are active for transfer hydrogenation of a range of ketones. In all cases, catalysts formed from precursors 2a and 2b are markedly more active than those formed from 4 and 5a.
Resumo:
Enantioenriched thiosulfinates have been obtained by dioxygenase- and chloroperoxidase-catalysed oxidation of 1,2-disulfides and dimethyl sulfoxide reductase-catalysed deoxygenation.