57 resultados para Left atrial ganglionated plexus
Resumo:
AIMS: Limited data are available concerning the evolution of the left atrial volume index (LAVI) in pre-heart failure (HF) patients. The aim of this study was to investigate clinical characteristics and serological biomarkers in a cohort with risk factors for HF and evidence of serial atrial dilatation.
METHODS AND RESULTS: This was a prospective substudy within the framework of the STOP-HF cohort (NCT00921960) involving 518 patients with risk factors for HF electively undergoing serial clinical, echocardiographic, and natriuretic peptide assessment. Mean follow-up time between assessments was 15 ± 6 months. 'Progressors' (n = 39) were defined as those with serial LAVI change ≥3.5 mL/m(2) (and baseline LAVI between 20 and 34 mL/m(2)). This cut-off was derived from a calculated reference change value above the biological, analytical, and observer variability of serial LAVI measurement. Multivariate analysis identified significant baseline clinical associates of LAVI progression as increased age, beta-blocker usage, and left ventricular mass index (all P < 0.05). Serological biomarkers were measured in a randomly selected subcohort of 30 'Progressors' matched to 30 'Non-progressors'. For 'Progressors', relative changes in matrix metalloproteinase 9 (MMP9), tissue inhibitor of metalloproteinase 1 (TIMP1), and the TIMP1/MMP9 ratio, markers of interstitial remodelling, tracked with changes in LAVI over time (all P < 0.05).
CONCLUSION: Accelerated LAVI increase was found to occur in up to 14% of all pre-HF patients undergoing serial echocardiograms over a relatively short follow-up period. In a randomly selected subcohort of 'Progressors', changes in LAVI were closely linked with alterations in MMP9, TIMP1, and the ratio of these enzymes, a potential aid in highlighting this at-risk group.
Resumo:
Doxorubicin (Dox), a mainstay of adjuvant breast cancer treatment, is associated with cardiac toxicity in the form of left ventricular dysfunction (LVD), LV diastolic dysfunction, or LV systolic dysfunction. Study objectives were to evaluate the prevalence of LVD in long-term breast cancer survivors treated with Dox and determine if brain-type natriuretic peptide (BNP) may help identify patients at risk for LVD. Patients who participated in prospective clinical trials of adjuvant Dox-based chemotherapy for breast cancer with a baseline left ventricular (LV) ejection fraction evaluation from 1999 to 2006 were retrospectively identified from the St Vincent's University Hospital database. Patients were invited to undergo transthoracic echocardiography, BNP analysis, and cardiovascular (CV) risk factor assessment. LVDD was defined as left atrial volume index >34 mL/m(2) and/or lateral wall E prime <10 m/s, and LVSD as LVEF <50 %. Of 212 patients identified, 154 participated, 19 patients had died (no cardiac deaths), and 39 declined. Mean age was 60.7 [55:67] years. A majority of the patients (128, 83 %) had low CV risk (0/1 risk factors), 21 (13.6 %) had 2 RFs, and 5 (3.2 %) ≥3 RFs. BMI was 27.2 ± 4.9 kg/m(2). Median Dox dose was 240 mg/m(2) [225-298]; 92 patients (59.7 %) received ≤240 mg/m(2) and 62 (40.3 %) > 240 mg/m(2). Baseline LVEF was 68.2 ± 8 %. At follow-up of 10.8 ± 2.2 years, LVEF was 64.4 ± 6 %. Three (1.9 %) subjects had LVEF <50 % and one (0.7 %) had LVDD. Dox >240 mg/m2 was associated with any LVEF drop. BNP levels at follow-up were 20.3 pg/ml [9.9-36.5] and 21.1 pg/ml [9.8-37.7] in those without LVD and 61.5 pg/ml [50-68.4] in those with LVD (p = 0.04). Long-term prospective data describing the impact of Dox on cardiotoxicity are sparse. At over 10 years of follow-up, decreases in LVEF are common, and dose related, but LVD as defined is infrequent (2.6 %). Monitoring with BNP for subclinical LVD needs further evaluation.
Resumo:
BACKGROUND: Persistently elevated natriuretic peptide (NP) levels in heart failure (HF) patients are associated with impaired prognosis. Recent work suggests that NP-guided therapy can improve outcome, but the mechanisms behind an elevated BNP remain unclear. Among the potential stimuli for NP in clinically stable patients are persistent occult fluid overload, wall stress, inflammation, fibrosis, and ischemia. The purpose of this study was to identify associates of B-type natriuretic peptide (BNP) in a stable HF population.
METHODS: In a prospective observational study of 179 stable HF patients, the association between BNP and markers of collagen metabolism, inflammation, and Doppler-echocardiographic parameters including left ventricular ejection fraction (LVEF), left atrial volume index (LAVI), and E/e prime (E/e') was measured.
RESULTS: Univariable associates of elevated BNP were age, LVEF, LAVI, E/e', creatinine, and markers of collagen turnover. In a multiple linear regression model, age, creatinine, and LVEF remained significant associates of BNP. E/e' and markers of collagen turnover had a persistent impact on BNP independent of these covariates.
CONCLUSION: Multiple variables are associated with persistently elevated BNP levels in stable HF patients. Clarification of the relative importance of NP stimuli may help refine NP-guided therapy, potentially improving outcome for this at-risk population.
Resumo:
In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.
Resumo:
AIMS: Hypertension is one of the main drivers of the heart failure (HF) epidemic. The aims of this study were to profile fibro-inflammatory biomarkers across stages of the hypertensive heart disease (HHD) spectrum and to examine whether particular biochemical profiles in asymptomatic patients identify a higher risk of evolution to HF.
METHODS AND RESULTS: This was a cross-sectional observational study involving a population of 275 stable hypertensive patients divided into two different cohorts: Group 1, asymptomatic hypertension (AH) (n= 94); Group 2, HF with preserved ejection fraction (n= 181). Asymptomatic hypertension patients were further subdivided according to left atrial volume index ≥34 mL/m(2) (n= 30) and <34 mL/m(2) (n= 64). Study assays involved inflammatory markers [interleukin 6 (IL6), interleukin 8 (IL8), monocyte chemoattractant protein 1 (MCP1), and tumour necrosis factor α], collagen 1 and 3 metabolic markers [carboxy-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 3 (PIIINP), and carboxy-terminal telopeptide of collagen 1 (CITP)], extra-cellular matrix turnover markers [matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1)], and the brain natriuretic peptide. Data were adjusted for age, sex, systolic blood pressure, and creatinine. Heart failure with preserved ejection fraction was associated with an increased inflammatory signal (IL6, IL8, and MCP1), an increased fibrotic signal (PIIINP and CITP), and an increased matrix turnover signal (MMP2 and MMP9). Alterations in MMP and TIMP enzymes were found to be significant indicators of greater degrees of asymptomatic left ventricular diastolic dysfunction.
CONCLUSION: These data define varying fibro-inflammatory profiles throughout different stages of HHD. In particular, the observations on MMP9 and TIMP1 raise the possibility of earlier detection of those at risk of evolution to HF which may help focus effective preventative strategies.
Resumo:
Increased levels of neuropeptide Y correlate with severity of left ventricular hypertrophy in vivo. At cardiomyocyte level, hypertrophy is characterised by increased mass and altered phenotype. The aims were to determine the contributions of increased synthesis and reduced degradation of protein to neuropeptide Y-mediated increase in mass, assess effects on gene expression, and characterise neuropeptide Y Y receptor subtype involvement. Neuropeptide Y (10 nM) increased protein mass of adult rat ventricular cardiomyocytes maintained in culture (24 h) (16%>basal) and de novo protein synthesis (incorporation of [14C]phenylalanine) (18%>basal). Neuropeptide Y (100 nM) prevented degradation of existing protein at 8 h. Actinomycin D (5 µM) attenuated increases in protein mass to neuropeptide Y (=1 nM) but not to neuropeptide Y (10 nM). [Leu31, Pro34]neuropeptide Y (10 nM), an agonist at neuropeptide Y Y1 receptors, increased protein mass (25%>basal) but did not stimulate protein synthesis. Neuropeptide Y-(3–36) (10 nM), an agonist at neuropeptide Y Y2 receptors, increased protein mass (29%>basal) and increased protein synthesis (13%>basal), respectively. Actinomycin D (5 µM) abolished the increase in protein mass elicited by neuropeptide Y-(3–36) but not that by [Leu31, Pro34]neuropeptide Y. BIBP3226 [(R)-N2-(diphenylacetyl)-N-(4-hydroxyphenylmethyl)-d-arginine amide] (1 µM), a neuropeptide Y Y1 receptor subtype-selective antagonist, and T4 [neuropeptide Y-(33–36)]4, a neuropeptide Y Y2 receptor subtype-selective antagonist, attenuated the increase in protein mass to 100 nM neuropeptide Y by 68% and 59%, respectively. Neuropeptide Y increased expression of the constitutive gene, myosin light chain-2 (MLC-2), maximally at 12 h (4.7-fold>basal) but did not induce (t=36 h) expression of foetal genes (atrial natriuretic peptide (ANP), skeletal-a-actin and myosin heavy chain-ß). This increase was attenuated by 86% and 51%, respectively, by BIBP3226 (1 µM) and T4 [neuropeptide Y-(33–36)]4 (100 nM). [Leu31, Pro34]neuropeptide Y (100 nM) (2.4-fold>basal) and peptide YY-(3–36) (100 nM) (2.3 fold>basal) increased expression of MLC-2 mRNA at 12 h. In conclusion, initiation of cardiomyocyte hypertrophy by neuropeptide Y requires activation of both neuropeptide Y Y1 and neuropeptide Y Y2 receptors and is associated with enhanced synthesis and attenuated degradation of protein together with increased expression of constitutive genes but not reinduction of foetal genes.