4 resultados para Learning Networks


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Societies which suffer from ethnic and political divisions are often characterised by patterns of social and institutional separation, and sometimes these divisions remain even after political conflict has ended. This has occurred in Northern Ireland where there is, and remains, a long-standing pattern of parallel institutions and services for the different communities. A socially significant example lies in the education system where a parallel system of Catholic and Protestant schools has been in place since the establishment of a national school system in the 1830s. During the years of political violence in Northern Ireland a variety of educational interventions were implemented to promote reconciliation, but most of them failed to create any systemic change. This paper describes a post-conflict educational initiative known as Shared Education which aims to promote social cohesion and school improvement by encouraging sustained and regular shared learning between students and broader collaboration between teachers and school leaders from different schools. The paper examines the background to work on Shared Education, describes a ‘sharing continuum’ which emerged as an evaluation and policy tool from this work and considers evidence from a case study of a Shared Education school partnership in a divided city in Northern Ireland. The paper will conclude by highlighting some of the significant social and policy impact of the Shared Education work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe how the pathfinder algorithm converts relatedness ratings of concept pairs to concept maps; we also present how this algorithm has been used to develop the Concept Maps for Learning website (www.conceptmapsforlearning.com) based on the principles of effective formative assessment. The pathfinder networks, one of the network representation tools, claim to help more students memorize and recall the relations between concepts than spatial representation tools (such as Multi- Dimensional Scaling). Therefore, the pathfinder networks have been used in various studies on knowledge structures, including identifying students’ misconceptions. To accomplish this, each student’s knowledge map and the expert knowledge map are compared via the pathfinder software, and the differences between these maps are highlighted. After misconceptions are identified, the pathfinder software fails to provide any feedback on these misconceptions. To overcome this weakness, we have been developing a mobile-based concept mapping tool providing visual, textual and remedial feedback (ex. videos, website links and applets) on the concept relations. This information is then placed on the expert concept map, but not on the student’s concept map. Additionally, students are asked to note what they understand from given feedback, and given the opportunity to revise their knowledge maps after receiving various types of feedback.