40 resultados para Larval
Resumo:
Stock enhancement experiments of European lobster (Homarus gammarus) have been carried out around the Kvitsoy Islands in south-western Norway since 1990. In addition to releases of coded wire tagged lobster juveniles (cultured) and subsequent monitoring of commercial fishery, a lobster hatchery was established in 1997. Several experiments were made on the communal-rearing approach where the performance of mixed larval groups (families) was evaluated under identical conditions. Berried females of wild and cultured origin and their respective fertilised eggs were screened by using microsatellite DNA profiling involving a multiplex set of six lobster specific primers, thereby allowing determination of both parental genotypes. Each female were kept separately during hatching, and the offspring were later mixed and raised in a communal rearing system. The early-larval survival was estimated at stage IV (bottom stage), and the survivors were identified to family and group by microsatellite profiling. Five different communal experiments were conducted, representing offspring from 65 berried females. Of the surviving larvae, 6.3% could not be assigned to family due to degraded DNA and no PCR amplification. Significant differences in early survival between offspring of wild and cultured origin were found in the experiments. No differences between the groups were found in stage IV larval size. Based on the pooled data on survival (as a measure of early larvae fitness) offspring of cultured females displayed a relative fitness of 60% in comparison to offspring from wild females. Large variation in survival was also observed among families within the wild and cultured groups, suggesting a genetic component for these traits and a potential for selective breeding.
Resumo:
The richness and turnover of coastal larval pools set upper limits for biodiversity in coastal systems. For particular local systems, such as embayments, the characteristics of the local larval pool are determined by the relative contributions of locally produced and external larvae. The balance between these sources partially reflects the extent of tidal exchange and is hence related to system size and flushing time. Larvae of benthic marine invertebrates were sampled from 8 bays along the Irish coast to investigate the effect of coastline configuration on the characteristics of the larval pool. Flushing time explained 34.5% of the variability in species richness from a series of daily samples. Many of the potentially relevant environmental variables are correlated, limiting the potential for individual variables to be examined in isolation. We therefore used a principal components analysis to describe the major patterns in environmental variability across bays. The second principal component separated bays along a gradient of increasing depth, salinity, tidal range and flushing time. Scores along this component were generally better predictors of the larval pool than single variables, explaining as much as 61.2% of the variation in species richness, diversity and similarity between dates. Deeper bays, with more saline water and longer flushing times, tended to have richer and more diverse larval pools, with a greater consistency in species composition between sample dates. No relationship was found between environmental variables and larval abundance. Our results suggest that flushing time, particularly when in combination with topographic variables, chlorophyll, tidal range and salinity, may be a useful predictor for the richness and turnover of local larval pools.
Resumo:
Investment in immunity is costly, so that resource-based trade-offs between immunity and sexually selected ornaments might be expected. The amount of resources that an individual can invest in each trait will be limited by the total resources available to them. It would therefore be informative to investigate how investment in immune function changes during growth or production of the sexual trait as resources are diverted to it. Using the dung beetle, Onthophagus taurus, which displays both sexual and male dimorphism in horn size, we examined changes in one measure of immune function, phenoloxidase (PO) activity, in the hemolymph of larvae prior to and during horn growth. We found that PO levels differed between small- and large-horned males throughout the final instar prior to the point where investment in horn growth was taking place. PO levels in females were intermediate to the 2 male morphs. These differences could not be accounted for by differences in condition, measured as hemolymph protein levels and weight. We suggest that the observed differences might be associated with sex- and morph-specific variation in juvenile hormone levels.
Resumo:
Although variation in body size has been recently reported in stingless bees (Meliponini), empirical evidence evaluating possible factors related to such variation is lacking, and thus it is not clear if it may have an adaptive significance. We evaluated if variation in the body size and weight of workers of stingless bees fluctuates across a seasonal pattern and if this could be related to characteristics of the food consumed during the larval stage. The weight of larval provisions, their protein, and sugar content were evaluated in four colonies of Nannotrigona perilampoides every 2 months across 1 year. Worker-destined larvae from the same combs were allowed to develop and were sampled as callow workers to determine their weight and size using morphometric data. The weight and size of workers were highly correlated and varied across the seasons in established colonies, suggesting that size variation cycles across the year in stingless bees. An increase in the protein content and, to a lesser degree, the quantity of larval food were positively linked to variation in body weight and size; food with richer protein content resulted in larger and heavier workers. This study provides the first evidence of an effect of the quantity and composition of larval food on the size of workers in stingless bees. Although body weight and size of workers differed across seasons, they were not readily noticeable as changes seem to occur as a continuum across the year. Since size polymorphism was of a larger magnitude across time but not within age cohorts and as it was highly determined by food resources, it may not be an adaptive feature in stingless bees. However, more studies are needed to determine the role of the cyclical change in worker body size on colony performance and thus its adaptive significance in stingless bees.
Resumo:
Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.
Resumo:
The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, S1-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.
Resumo:
Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.
Resumo:
The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans.
Resumo:
The European lobster is distributed throughout the south and western regions of the Norwegian coast. A previous lobster allozyme investigation (1993) in the Tysfjord region, north of the Arctic Circle demonstrated that the lobster population from this region was genetically different from lobster samples collected in other parts of Norway. More detailed investigation including supplementary extensive sampling and additional allozyme, microsatellite and mtDNA analyses are reported here. This investigation supports the genetic distinctness of the Tysfjord population and shows that this is mainly due to a reduction (60�70%) in gene diversity (observed heterozygosities and number of alleles) compared with lobsters from more southern regions. In addition to the Tysfjord region, the comprehensive sampling also included lobsters found in the adjacent Nordfolda fjord system. Genetic analyses provided evidence for significant differences between the lobster populations of Tysfjord and Nordfolda, even though they are separated by a coastal distance of only 142 km. The two populations were also different with regards to several biological characteristics such as body size. The genetic difference between these two geographically close populations is likely to be due to the local hydrological conditions, preventing larval dispersal between the fjord systems. Assessment of lobster abundance in the north-west region suggests that the sub-arctic lobster populations are geographically isolated.
Resumo:
Ostrea edulis was extremely rare in the wild in Strangford Lough from the early 1900s until renewed spatfall was observed at a number of sites in the 1990s. A monitoring programme was undertaken to investigate the presence and distribution of planktonic oyster larvae at nine sites around the lough between June and September in 1997 and 1998 as a precursor to studies of spatfall patterns. Larval densities at sites in the northern basin of the lough were significantly higher than those in the southern basin where larvae were lacking or in low numbers. Densities and sizes of oyster larvae showed significant temporal variation suggesting pulsed larval release. Larval densities also showed significant spatial variation with higher densities at sites closer to commercial stocks pointing to these as the main source of oyster larvae. This hypothesis was supported during a larval flux study over a complete tidal cycle which indicated a 90% net tidal movement of O. edulis larvae from the entrance of the bay where commercial stocks were held to the main body of the lough. Thus the maintenance of dense commercial stocks of flat oysters may provide the key to the redevelopment of native oyster beds in Strangford Lough and elsewhere by providing an initial broodstock nucleus from which larvae can be exported.
Resumo:
1. As many species of marine benthic invertebrates have a limited capacity for movement as adults, dispersal mode is often considered as a determinant of geographical ranges, genetic structure and evolutionary history. Species that reproduce without a larval stage can only disperse by floating or rafting. It is proposed that the colonization processes associated with such direct developing species result in spatial distributions that show relatively greater fine scale patchiness than the distributions of species with a larval dispersal stage. This hypothesis was tested by collecting molluscs at different spatial scales in the Isle of Man. 2. Spatial distribution patterns supported the predictions based on dispersal mode. Estimated variance components for species with larval dispersal suggested that the majority of the spatial variation was associated with variation between shores. In comparison, there was relatively more variability within shores for abundance counts of species with direct development. 3. Multivariate analyses reflected the univariate results. An assemblage of direct developers provided a better discrimination between sites (100 m separation) but the group of species with larval dispersal gave a clearer separation of shores (separated by several km). 4. The fine scale spatial structure of direct developing species was reflected in higher average species diversity within quadrats. Species richness also reflected dispersal mode, with a higher fraction of the regional species pool present for direct developers in comparison to species with larval dispersal. This may reflect the improved local persistence of taxa that avoid the larval dispersal stage.
Resumo:
Neuropeptide F is the most abundant neuropeptide in parasitic flatworms and is analogous to vertebrate neuropeptide Y. This paper examines the effects of neuropeptide F on tetrathyridia of the cestode Mesocestoides vogae and provides preliminary data on the signalling mechanisms employed. Neuropeptide F ( greater than or equal to 10 muM) had profound excitatory effects on larval motility in vitro. The effects were insensitive to high concentrations (I mM) of the anaesthetic procame hydrochloride suggesting extraneuronal sites of action. Neuropeptide F activity was not significantly blocked by a FMRFamide-related peptide analog (GNFFRdFamide) that was found to inhibit GNFFRFamide-induced excitation indicating the occurrence of distinct neuropeptide F and FMRFamide-related peptide receptors. Larval treatment with guanosine 5'-O-(2-thiodiphosphate) trilithium salt prior to the addition of neuropeptide F completely abolished the excitatory effects indicating the involvement of G-proteins and a G-protein coupled receptor in neuropeptide F activity. Addition of guanosine 5'-O-(2-thiodiphosphate) following neuropeptide F had limited inhibitory effects consistent with the activation of a signalling cascade by the neuropeptide. With respect to Ca2+ involvement in neuropeptide F-induced excitation of M. vogae larvae, the L-type Ca2+-channel blockers verapamil and nifedipine both abolished neuropeptide F activity as did high Mg+ concentrations and drugs which blocked sarcoplasmic reticulum Ca2+-activated Ca2+-channels (ryanodine) and sarcoplasmic reticulum Ca2+ pumps (cyclopiazonic acid). Therefore, both extracellular and intracellular Ca2+ is important for neuropeptide F excitation in M. vogae. With resepct to second messengers, the protein kinase C inhibitor chelerythrine chloride and the adenylate cyclase inhibitor MDL-2330A both abolished neuropeptide F-induced excitation. The involvement of a signalling pathway that involves protein kinase C was further supported by the fact that phorbol-12-myristate-13-acetate,known to directly activate protein kinase C, had direct excitatory effects on larval motility. Although neuropeptide F is structurally analogous to neuropeptide Y, its mode-of-action in flatworms appears quite distinct from the common signalling mechanism seen in vertebrates. (C) 2003 on behalf of Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.