4 resultados para Langmuir-Blodgett technique


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple Langmuir probe technique has been used to measure the electron density, electron temperature, and plasma potential in the late stages (>5 mu s) of a laser ablated plasma plume. In the plasma, formed following 248 nm laser irradiation of a copper target, in vacuum at a laser fluence of 2.5 J cm(-2), electron densities of similar to 10(18) m(-3) and temperatures of similar to 0.5 eV were measured. These values are comparable with those reported previously using Faraday cup detectors and optical emission spectroscopy, respectively. (C) 1997 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissociative electron attachment to the reactive C2F5 molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F- is formed close to zero electron energy in dissociative electron attachment to C2F5. The afterglow measurements also show that F- is formed in collisions between electrons and C2F5 molecules with rate constants of 3.7 × 10-9 cm3 s-1 to 4.7 × 10-9 cm3 s-1 at temperatures of 300–600 K. The rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.