6 resultados para La Revellière-Lépeaux, Louis-Marie de, 1753-1824.
Resumo:
A scalable large vocabulary, speaker independent speech recognition system is being developed using Hidden Markov Models (HMMs) for acoustic modeling and a Weighted Finite State Transducer (WFST) to compile sentence, word, and phoneme models. The system comprises a software backend search and an FPGA-based Gaussian calculation which are covered here. In this paper, we present an efficient pipelined design implemented both as an embedded peripheral and as a scalable, parallel hardware accelerator. Both architectures have been implemented on an Alpha Data XRC-5T1, reconfigurable computer housing a Virtex 5 SX95T FPGA. The core has been tested and is capable of calculating a full set of Gaussian results from 3825 acoustic models in 9.03 ms which coupled with a backend search of 5000 words has provided an accuracy of over 80%. Parallel implementations have been designed with up to 32 cores and have been successfully implemented with a clock frequency of 133?MHz.
Resumo:
There is considerable interest in creating embedded, speech recognition hardware using the weighted finite state transducer (WFST) technique but there are performance and memory usage challenges. Two system optimization techniques are presented to address this; one approach improves token propagation by removing the WFST epsilon input arcs; another one-pass, adaptive pruning algorithm gives a dramatic reduction in active nodes to be computed. Results for memory and bandwidth are given for a 5,000 word vocabulary giving a better practical performance than conventional WFST; this is then exploited in an adaptive pruning algorithm that reduces the active nodes from 30,000 down to 4,000 with only a 2 percent sacrifice in speech recognition accuracy; these optimizations lead to a more simplified design with deterministic performance.