69 resultados para LEAD 210
Resumo:
Natural landscape boundaries between vegetation communities are dynamically influenced by the selective grazing of herbivores. Here we show how this may be an emergent property of very simple animal decisions, without the need for any sophisticated choice rules etc., using a model based on biased diffusion. Animal grazing intensity is coupled with plant competition, resulting in reaction-diffusion dynamics, from which stable boundaries spontaneously emerge. In the model, animals affect their resources by both consumption and trampling. It is assumed that forage consists of two heterogeneously distributed competing resource species, one that is preferred (grass) over the other (heather) by the animals. The solutions to the resulting system of differential equations for three cases a) optimal foraging, b) random walk foraging and c) taxis-diffusion are presented. Optimal and random foraging gave unrealistic results, but taxis-diffusion accorded well with field observations. Persistent boundaries between patches of near-monoculture vegetation were predicted, with these boundaries drifting in response to overall grazing pressure (grass advancing with increased grazing and vice versa). The reaction-taxis-diffusion model provides the first mathematical explanation for such vegetation mosaic dynamics and the parameters of the model are open to experimental testing.
Resumo:
Rings of perovskite lead zirconium titanate (PZT) with internal diameters down to similar to 5 nm and ring thicknesses of similar to 5-10 nm have been fabricated and structurally, crystallographically, and chemically characterized using an analytical transmission electron microscope. Ring fabrication involved conformal solution deposition of a thin layer of PZT on the inside of a thin film of anodized aluminum oxide nanopores, and subsequent sectioning of the coated pores perpendicular to their cylinder axes. Although the starting solution used for the solution deposition was made from morphotropic phase boundary PZT, the nanorings were found to be on the zirconium-rich side of the PZT phase diagram. Nevertheless, coatings were found to be of perovskite crystallography. The dimensions of these nanorings are such that they have the potential to demonstrate polarization vortices, as modeled by Naumov [Nature (London) 432, 737 (2004)], and moreover represent the perfect morphology to allow vortex alignment and the creation of the ferroelectric "solenoid" as modeled by Gorbatsevich and Kopaev [Ferroelectrics 161, 321 (1994)].
Resumo:
The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.
Resumo:
Reflux of gastric contents can lead to development of reflux esophagitis and Barrett's esophagus. Barrett's esophagus is a risk factor for esophageal adenocarcinoma. Damage to DNA may lead to carcinogenesis but is repaired through activation of pathways involving polymorphic enzymes, including human 8-oxoguanine glycosylase 1 (hOGG1), X-ray repair cross-complementing 1 (XRCC1), and xeroderma pigmentosum group D (XPD). Of the single nucleotide polymorphisms identified in these genes, hOGG1 Ser 326Cys, XRCC1 Arg 399Gln, and XPD Lys 751Gln are particularly common in Caucasians and have been associated with lower DNA repair capacity. Small studies have reported associations with XPD Lys 751Gln and esophageal adenocarcinoma. XRCC1 Arg 399Gln has been linked to Barrett's esophagus and reflux esophagitis. In a population-based case-control study, we examined associations of the hOGG1 Ser 326Cys, XRCC1 Arg 399Gln, and XPD Lys 751Gln polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), reflux esophagitis (n = 230), and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using Taq-Man allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. There were no statistically significant associations between these polymorphisms and risk of esophageal adenocarcinoma, Barrett's esophagus, or reflux esophagitis.
Resumo:
The incidence of esophageal adenocarcinoma has increased in recent years, and Barrett's esophagus is a recognized risk factor. Gastroesophageal reflux of acid and/or bile is linked to these conditions and to reflux esophagitis. Inflammatory disorders can lead to carcinogenesis through activation of "prosurvival genes," including cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Increased expression of these enzymes has been found in esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Polymorphic variants in COX-2 and iNOS genes may be modifiers of risk of these conditions. In a population-based case-control study, we examined associations of the COX-2 8473 T>C and iNOS Ser 608 Leu (C>T) polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), and reflux esophagitis (n = 230) and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using TaqMan allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. The presence of at least one COX-2 8473 C allele was associated with a significantly increased risk of esophageal adenocarcinoma (adjusted odds ratio, 1.58; 95% confidence interval, 1.04-2.40). There was no significant association between this polymorphism and risk of Barrett's esophagus or reflux esophagitis or between the iNOS Ser 608 Leu polymorphism and risk of these esophageal conditions. Our study suggests that the COX-2 8473 C allele is a potential genetic marker for susceptibility to esophageal adenocarcinoma.
Resumo:
The aim of the study was to establish if a relationship exists between the energy efficiency of gait, and measures of activity limitation, participation restriction, and health status in a representative sample of children with cerebral palsy (CP). Secondary aims were to investigate potential differences between clinical subtypes and gross motor classification, and to explore other relationships between the measures under investigation. A longitudinal study of a representative sample of 184 children with ambulant CP was conducted (112 males, 72 females; 94 had unilateral spastic C P, 84 had bilateral spastic C P, and six had non-spastic forms; age range 4-17y; Gross Motor Function Classification System Level I, n=57; Level II, n=91; Level III, n=22; and Level IV, n=14); energy efficiency (oxygen cost) during gait, activity limitation, participation restriction, and health status were recorded. Energy efficiency during gait was shown to correlate significantly with activity limitations; no relationship between energy efficiency during gait was found with either participation restriction or health status. With the exception of psychosocial health, all other measures showed significant differences by clinical subtype and gross motor classification. The energy efficiency of walking is not reflective of participation restriction or health status. Thus, therapies leading to improved energy efficiency may not necessarily lead to improved participation or general health.
Resumo:
Periodic arrays of nanorings of morphotropic phase boundary lead zirconium titanate ( PZT) have been successfully fabricated using a novel self-assembly technique: close-packed monolayers of latex nanospheres were deposited onto Pt-coated silicon substrates, and then plasma cleaned to form ordered arrays of isolated nanospheres, not in contact with each other. Subsequent pulsed laser deposition of PZT, high angle argon ion etching and thermal annealing created the arrays of isolated nanorings, with diameters of similar to 100 nm and wall thicknesses of similar to 10 nm. Energy dispersive x-ray analysis confirms that the rings are compositionally morphotropic phase boundary PZT, and high resolution transmission electron microscopy imaging of lattice fringes demonstrates some periodicities consistent with perovskite rather than pyrochlore material. The dimensions of these nanorings, and the expected 'soft' behaviour of the ferroelectric material from which they are made, means that they offer the most likely opportunity to date for observing whether or not vortex arrangements of electrical dipoles, analogous to those seen in ferromagnetic nanostructures, actually exist.
Resumo:
Atomic absorption spectroscopy of the ionic liquid 1-ethyl-3-methylimidazolium ethanoate ([emim](2)[O2CMe]), prepared according to International Patent WO 96/18459, showed it to contain large amounts of lead impurity: (ca. 0.5 M): [emim](2)[Pb(O2CMe)(4)] was isolated and shown crystallographically to contain the first known example of a monomeric, homoleptic pentacoordinate lead(ii) carboxylate complex, with a stereochemically active lone-pair.