36 resultados para LACTATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Lactate was produced from xylose using electrodialysis culture (ED-C)-associated product separation. In a medium containing 50 g xylose/l, the ED-C was completed in only 32 h (i.e. less than half the time taken by the control culture, without electrodialysis). At 80 g xylose/l, the control culture was unable to consume more than 50 g xylose/1, whereas the ED-C showed increased xylose consumption and was completed by 45 h. The maximum rate of lactate production in the ED-C was higher than that in the control culture. ED-C was also carried out (at 80 g initial xylose/ l) with a supply of fresh xylose-free medium. This ED-C was completed within 30 h, which represents a reduction in fermentation time of 15 h when compared to ED-C without addition of xylose-free medium. Thus, rapid production of L-lactate was achieved by using ED-C which supplied fresh xylose-free medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conversion of xylose to l-lactate was carried out by Lactococcus lactis IO-1 using an electrodialysis bioprocess (ED-BP). At 50 g l -1 xylose, the ED-BP was already complete in half the time (32 h) taken by the control culture without electrodialysis (>60 h). At 80 g l -1 xylose, the control culture was unable to consume >50 g l -1 xylose, whereas the ED-BP consumed 75 g l -1 xylose in 45 h. Thus, the simultaneous removal of lactate and acetate by ED-BP was associated with high-speed l-lactate production, increased xylose consumption and an increased l-lactate production. Copyright (C) 1998 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrary to the traditional view, recent studies suggest that diabetes mellitus has an adverse influence on male reproductive function. Our aim was to determine the affect of diabetes on the testicular environment by identifying and then assessing perturbations in small molecule metabolites. Testes were obtained from control and streptozotocin induced diabetic C57BL/6 mice, two, four and eight weeks post treatment. Diabetic status was confirmed by HbA1c, non fasting blood glucose, physiological condition and body weight. Protein free, low molecular weight, water soluble extracts were assessed using 1H NMR spectroscopy. Principal Component Analysis of the derived profiles was used to classify any variations and specific metabolites were identified based on their spectral pattern. Characteristic metabolite profiles were identified for control and diabetic animals with the most distinctive being from mice with the greatest physical deterioration and loss of bodyweight. Eight streptozotocin treated animals did not develop diabetes and displayed profiles similar to controls. Diabetic mice had decreases in creatine, choline and carnitine and increases in lactate, alanine and myo-inositol. Betaine levels were found to be increased in the majority of diabetic mice but decreased in two animals with severe loss of body weight and physical condition. The association between perturbations in a number of small molecule metabolites known to be influential in sperm function, with diabetic status and physiological condition, adds further impetus to the proposal that diabetes influences important spermatogenic pathways and mechanisms in a subtle and previously unrecognised manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultured cerebellar granule neurons (CGN) are commonly used to assess neurotoxicity, but are routinely maintained in supraphysiological (25 mM) extracellular K+ concentrations [K+]o. We investigated the effect of potassium channel blockade on survival of CGN derived from Swiss-Webster mice in supraphysiological (25 mM) and physiological (5.6 mM) [K+]o. CGN were cultured for 5 days in 25 mM K+, then in 5.6 mM K+ or 25 mM K+ (control). Viability, assayed 24 h later by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) reduction and by lactate dehydrogenase (LDH) release, was ∼50% in 5.6 mM K+ versus 25 mM K+ (p < .001). Potassium channel blockers, 2 mM 4-aminopyridine (4-AP), 2 mM tetraethylammonium (TEA) or 1 mM Ba2+, individually afforded limited protection in 5.6 mM K+. However, survival in 5.6 mM K+ with a combination of 4-AP, TEA and Ba2+ was similar to survival in 25 mM K+ without blockers (p < .001 versus 5.6 mM K+ alone). CGN survival in 25 mM K+ was attenuated 25% by 2 μM nifedipine (p > .001), but nifedipine did not attenuate neuroprotection by K+ channel blockers. Together, these results suggest that the survival of CGN depends on the K+ permeability of the membrane rather than the activity of a particular type of K+ channel, and that the mechanism of neuroprotection by K+ channel blockers is different from that of elevated [K+]o.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined physiological stress responses in the edible crab, Cancer pagurus, subjected to the commercial fishery practice of manual de-clawing. We measured haemolymph glucose and lactate, plus muscular glycogen and glycogen mobilisation, in three experiments where the crabs had one claw removed. In the first, crabs showed physiological stress responses when 'de-clawed' as compared to 'handled only over the short term of 1-10 min. In the second, de-clawing and the presence of a conspecific both increased the physiological stress responses over the longer term of 24 h. In the third, de-clawing was shown to be more stressful than 'induced autotomy' of claws. Further, the former practice caused larger wounds to the body and significantly higher mortality than the latter. Since the fishery practice is to remove both claws, the stress response observed and mortality data reported are conservative.