14 resultados para Krypton.
Resumo:
The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 100 TW cm-2 to 100 PW cm-2 with the recent predictions of Kornev et al (2003 Phys. Rev. A 68 043414) provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong-field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 10 PW cm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discuss why this mechanism was not apparent in previous studies.
Resumo:
We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).
Resumo:
Electron-impact excitation data for He-like ions are of significant importance for diagnostic applications to both laboratory and astrophysical plasmas. Here we report on the first fully relativistic R -matrix calculations with radiation damping for the He-like ions Fe 24+ and Kr 34+ . Effective collision strengths for these two ions have been determined with and without damping over a wide temperature range for all transitions between the 49 levels through n = 5. We find that damping has a pronounced effect on the effective collision strengths for excitation to some of the low-lying levels, but its effect on excitation to the vast majority of levels is small. At the energy of a resonance peak, we also investigate the effect of radiation damping on the angular distribution of scattered electrons. Finally, we compare our results for Fe 24+ with an earlier intermediate coupling frame transformation R -matrix calculation with radiation damping by Whiteford et al ( J. Phys. B: At. Mol. Opt. Phys. 34 3179) and find good agreement, especially for excitation to the lower levels.
Resumo:
We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.
Resumo:
Collisional effects can have strong influences on the population densities of excited states in gas discharges at elevated pressure. The knowledge of the pertinent collisional coefficient describing the depopulation of a specific level (quenching coefficient) is, therefore, important for plasma diagnostics and simulations. Phase resolved optical emission spectroscopy (PROES) applied to a capacitively coupled rf discharge excited with a frequency of 13.56 MHz in hydrogen allows the measurement of quenching coefficients for emitting states of various species, particularly of noble gases, with molecular hydrogen as a collision partner. Quenching coefficients can be determined subsequent to electron-impact excitation during the short field reversal phase within the sheath region from the time behavior of the fluorescence. The PROES technique based on electron-impact excitation is not limited â?? in contrast to laser techniques â?? by optical selection rules and the energy gap between the ground state and the upper level of the observed transition. Measurements of quenching coefficients and natural fluorescence lifetimes are presented for several helium (3 1S,4 1S,3 3S,3 3P,4 3S), neon (2p1 ,2p2 ,2p4 ,2p6), argon (3d2 ,3d4 ,3d18 and 3d3), and krypton (2p1 ,2p5) states as well as for some states of the triplet system of molecular hydrogen.
Resumo:
Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.
Resumo:
The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.
Resumo:
We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.
Resumo:
Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the View the MathML source, and 2p23ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R -matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range View the MathML source, obtained from the nonresonant collision strengths from the Flexible Atomic Code.
Determining the Reaeration Coefficient and Hydrodynamic Properties of Rivers Using Inert Gas Tracers
Resumo:
Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.
Resumo:
Collision strengths (Ω ) are calculated for all 6328 transitions among the lowest 113 levels belonging to the 2s22p5,2s2p6,2s22p43ℓ,2s2p53ℓ, and 2p63ℓ configurations of fluorine-like krypton, Kr XXVIII, using the Dirac Atomic R -matrix Code. All partial waves with angular momentum J⩽40 are included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions a top-up is employed to obtain converged values of Ω up to an energy of 400 Ryd. Resonances in the thresholds region are resolved on a narrow energy mesh, and results for effective collision strengths (ϒ) are obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below View the MathML source, and the accuracy of the results is assessed. In addition, effective collision strengths are listed for the temperature range View the MathML source, obtained from non-resonant collision strengths generated with the FAC code.
Resumo:
The generation of the third and fourth harmonics from the interaction of a 1 ps, ultraviolet (UV), krypton fluoride (KrF) laser with a solid surface is investigated. The conversion efficiency is seen to increase linearly with I lambda(2), with a transition from specular harmonic emission to emission into 2 pi steradians occurring between 10(15) and 10(16) W cm(-2) mu m(2). The diffuse emission is strongly dependent on the incidence angle of the laser, with the peak in emission at around 30 degrees being consistent with measurements for resonance absorption. Finally, the conversion efficiencies are found to be in agreement with particle-in-cell (PIC) simulations including appropriate density scalelengths. (C) 1998 Elsevier Science B.V.