3 resultados para Knowledge-Based Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper aims to contribute towards understanding how safety knowledge can be elicited from railway experts for the purposes of supporting effective decision-making. Design/methodology/approach – A consortium of safety experts from across the British railway industry is formed. Collaborative modelling of the knowledge domain is used as an approach to the elicitation of safety knowledge from experts. From this, a series of knowledge models is derived to inform decision-making. This is achieved by using Bayesian networks as a knowledge modelling scheme, underpinning a Safety Prognosis tool to serve meaningful prognostics information and visualise such information to predict safety violations. Findings – Collaborative modelling of safety-critical knowledge is a valid approach to knowledge elicitation and its sharing across the railway industry. This approach overcomes some of the key limitations of existing approaches to knowledge elicitation. Such models become an effective tool for prediction of safety cases by using railway data. This is demonstrated using passenger–train interaction safety data. Practical implications – This study contributes to practice in two main directions: by documenting an effective approach to knowledge elicitation and knowledge sharing, while also helping the transport industry to understand safety. Social implications – By supporting the railway industry in their efforts to understand safety, this research has the potential to benefit railway passengers, staff and communities in general, which is a priority for the transport sector. Originality/value – This research applies a knowledge elicitation approach to understanding safety based on collaborative modelling, which is a novel approach in the context of transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. While summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour, and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease, and mortality compared to cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying / resting times, and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The BlackEnergy malware targeting critical infrastructures has a long history. It evolved over time from a simple DDoS platform to a quite sophisticated plug-in based malware. The plug-in architecture has a persistent malware core with easily installable attack specific modules for DDoS, spamming, info-stealing, remote access, boot-sector formatting etc. BlackEnergy has been involved in several high profile cyber physical attacks including the recent Ukraine power grid attack in December 2015. This paper investigates the evolution of BlackEnergy and its cyber attack capabilities. It presents a basic cyber attack model used by BlackEnergy for targeting industrial control systems. In particular, the paper analyzes cyber threats of BlackEnergy for synchrophasor based systems which are used for real-time control and monitoring functionalities in smart grid. Several BlackEnergy based attack scenarios have been investigated by exploiting the vulnerabilities in two widely used synchrophasor communication standards: (i) IEEE C37.118 and (ii) IEC 61850-90-5. Specifically, the paper addresses reconnaissance, DDoS, man-in-the-middle and replay/reflection attacks on IEEE C37.118 and IEC 61850-90-5. Further, the paper also investigates protection strategies for detection and prevention of BlackEnergy based cyber physical attacks.