2 resultados para Kato Type Operators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions. Interestingly, we show that the distributions for different system sizes collapse on thesame curve after scaling for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii–Kosterlitz–Thouless type. We propose and analyse the feasibility of an experimental reconstruction of the distribution using light–matter interfaces for atoms in optical lattices or in optical resonators.