122 resultados para KM mouse
Resumo:
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic ( 30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals (n=415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus, it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.
Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial.
Resumo:
Although the mechanisms of osteoinduction by bone morphogenic proteins (BMPs) are increasingly understood, the most appropriate time to administer BMPs exogenously is yet to be clarified.The purpose of this study was to investigate when BMP may be administered to a fracture arena to maximise the enhancement of healing.Forty mice with externally fixed left femoral fractures were randomised into four groups: Group I, the control group was given a placebo of 30 ll saline at day 0; Groups II, III and IV were given 30 ll saline plus 2.5 lg rhBMP-2, at post-operative days 0, 4 or 8, respectively.Sequential radiographs were taken at days 0, 8, 16.On day 22 the mice were sacrificed and both femora were harvested for biomechanical assessment in 3-point bending and histological evaluation.Radiographic analysis indicated that healing of fractures in Groups II and III was significantly greater (p <0.05) than those in Groups I and IV, at both 16 and 22 days post-fracture. The highest median bone mineral content at the fracture site was evidenced in Group III and II.Furthermore, Group III also had the highest relative ultimate load values, followed by Groups II, IV and I.Greater percentage peak loads were observed between Group I and both Groups II and III (p <0.05). Histological examination confirmed that at 22 days post-fracture, only fractures in Groups II and III had united with woven bone, and Groups I and IV still had considerable amounts of fibrous tissue and cartilage at the fracture gap.Data presented herein indicates that there is a time after fracture when rhBMP administration is most effective, and this may be at the time of surgery as well as in the early fracture healing phases.
Resumo:
DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is specifically expressed by human dendritic cells (DC) upon activation and therefore serves as marker of human DC maturation. DC-LAMP is detected first in activated human DC within MHC class II molecules-containing compartments just before the translocation of MHC class II-peptide complexes to the cell surface, suggesting a possible involvement in this process. The present study describes the cloning and characterization of mouse DC-LAMP, whose predicted protein sequence is over 50% identical to the human counterpart. The mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization (16B2-B4 and 3q26) and conserved organization with the human DC-LAMP gene. Analysis of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but also its unexpected absence from mouse lymphoid organs and from mouse DC activated either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC and this observation raises new questions regarding the role of human DC-LAMP in human DC.
Resumo:
Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.