22 resultados para Jellyfish
Resumo:
Jellyfish (Cnidaria: Scyphozoa) are increasingly thought to play a number of important ecosystem roles, but often fundamental knowledge of their distribution, seasonality and inter-annual variability is lacking. Bloom forming species, due to their high densities, can have particularly intense trophic and socio-economic impacts. In northern Europe it is known that one particularly large (up to 30 kg wet weight) bloom forming jellyfish is Rhizostoma spp. Given the potential importance, we set out to review all known records from peer-reviewed and broader public literature of the jellyfish R. octopus (Linnaeus) and R. pulmo (Macri) (Scyphozoa: Rhizostomae) across western Europe. These data revealed distinct hotspots where regular Rhizostoma spp. aggregations appeared to form, with other sites characterized by occasional abundances and a widespread distribution of infrequent observations. Surveys of known R. octopus hotspots around the Irish Sea also revealed marked inter-annual variation with particularly high abundances forming during 2003. The location of such consistent aggregations and inter-annual variances are discussed in relation to physical, climatic and dietary variations.
Resumo:
An oceanic cruise (October 2007) revealed the widespread occurrence of Pelagia noctiluca in the NE Atlantic just prior to a major fish kill induced by P. noctiluca in Irish coastal waters.
Resumo:
Jellyfish are one of the most abundant and conspicuous members of our coastal marine fauna and are now known to play major trophic roles in marine systems. However, little is known about the movements and behaviour of individuals. We equipped individual compass jellyfish (Chrysaora hysoscella) (n = 15) off the Dingle coast, Ireland, with miniature time-depth recorders to log their depth over periods of a few hours. Vertical movements were extensive, with all jellyfish changing their depth during tracking. A range of vertical movements were seen including initial diving from the surface down to a maximum of 29.6 m after device attachment, some jellyfish remaining near the bottom, some moving up and down in mid-water and some moving back near the surface. These results show that jellyfish actively reposition themselves in the water column over small time-scales and open the way for more extensive studies equipping jellyfish with electronic tags.
Resumo:
It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.
Resumo:
Two techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three scyphozoan jellyfish (Cyanea capillata, Rhizostoma octopus and Chrysaora hysoscella). First, bomb-calorimetry was used, a technique that is readily available and inexpensive. However, the reliability of this technique for gelatinous material is contentious. Second, further analysis involving the more labour intensive proximate-composition analysis (protein, fat and carbohydrate) was carried out on two species (C capillata and R. octopus). These proximate data were subsequently converted to energy densities. The two techniques (bomb-calorimetry and proximate-composition) gave very similar estimates of energy density. Differences in energy density were found both amongst different species and between different tissues of the same species. Mean ( +/- S.D.) energy density estimates for whole animals from bomb-calorimetry were 0.18 +/- 0.05, 0.11 +/- 0.04, and 0.10 +/- 0.03 kJ g wet mass(-1) for C. capillata, R. octopus, and C. hysoscella respectively. The implications of these low energy densities for species feeding on jellyfish are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Jellyfish (medusae) are sometimes the most noticeable and abundant members of coastal planktonic communities, yet ironically, this high conspicuousness is not reflected in our overall understanding of their spatial distributions across large expanses of water. Here, we set out to elucidate the spatial (and temporal) patterns for five jellyfish species (Phylum Cnidaria, Orders Rhizostomeae and Semaeostomeae) across the Irish & Celtic Seas, an extensive shelf-sea area at Europe's northwesterly margin encompassing several thousand square kilometers. Data were gathered using two independent methods: (1) surface-counts of jellyfish from ships of opportunity, and (2) regular shoreline surveys for stranding events over three consecutive years. Jellyfish species displayed distinct species-specific distributions, with an apparent segregation of some species. Furthermore, a different species composition was noticeable between the northern and southern parts of the study area. Most importantly, our data suggests that jellyfish distributions broadly reflect the major hydrographic regimes (and associated physical discontinuities) of the study area, with mixed water masses possibly acting as a trophic barrier or non-favourable environment for the successful growth and reproduction of jellyfish species.
Resumo:
Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal
Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air
Resumo:
Within the marine environment, aerial surveys have historically centred on apex predators, such as pinnipeds, cetaceans and sea birds. However, it is becoming increasingly apparent that the utility of this technique may also extend to subsurface species such as pre-spawning fish stocks and aggregations of jellyfish that occur close to the surface. In light of this, we tested the utility of aerial surveys to provide baseline data for 3 poorly understood scyphozoan jellyfish found throughout British and Irish waters: Rhizostoma octopus, Cyanea capillata and Chrysaora hysoscella. Our principal objectives were to develop a simple sampling protocol to identify and quantify surface aggregations, assess their consistency in space and time, and consider the overall applicability of this technique to the study of gelatinous zooplankton. This approach provided a general understanding of range and relative abundance for each target species, with greatest suitability to the study of R. octopus. For this species it was possible to identify and monitor extensive, temporally consistent and previously undocumented aggregations throughout the Irish Sea, an area spanning thousands of square kilometres. This finding has pronounced implications for ecologists and fisheries managers alike and, moreover, draws attention to the broad utility of aerial surveys for the study of gelatinous aggregations beyond the range of conventional ship-based techniques.
Resumo:
Evidence is provided from stable isotope analysis that aggregations of small ocean sunfish Mola mola (total length <1 m) feed broadly within coastal food webs and their classification as obligate predators of gelatinous zooplankton requires revision.
Resumo:
Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear.Apersistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. © 2013 The Authors.
Resumo:
Jellyfish are often considered as stressors on marine ecosystems or as indicators of highly perturbed systems. Far less attention is given to the potential of such species to provide beneficial ecosystem services in their own right. In an attempt to redress this imbalance we take the liberty of portraying jellyfish in a positive light and suggest that the story is not entirely one of doom and gloom. More specifically, we outline how gelatinous marine species contribute to the four categories of ecosystem services (regulating, supporting, provisioning and cultural) defined by the Millennium Ecosystem Assessment. This discussion ranges from the role of jellyfish in carbon capture and advection to the deep ocean through to the creation of micro habitat for developing fishes and the advancement of citizen science programmes. Attention is paid also to incorporation of gelatinous species into fisheries or ecosystem level models and the mechanisms by which we can improve the transfer of information between jellyfish researchers and the wider non-specialist community.
Resumo:
The title of this short (about 4500 words) intervention translates to "To Nail a Jellyfish? Finding a progressive agenda for EU anti-discrimination law". I engage with those criticising EU anti-discrimination law as yet another emanation of the EU's "neo-liberal" nature which fails to establish a viable social policy regime. I criticise this in two directions. First, I take issue with the theory that anti-discrimination law and policy has to be part of social policy. Actually, the field has a mission which differs from social policy, in that it addresses disadvantage resulting from othering, combating stereotypes as well as promoting accomodation of difference. Second, I show how the critique of judicialisation of policy is not unique to anti-discrimination law and policy. The so called turn to rights based employment law has been criticised under this mantra by those who fear that collective labour law mechanisms will become less prevalent. Further, those who have engaged with anti-discrimination law for a much longer time than those criticising it have also devised means to overcome the individualistic tendencies of rights adjudication. They have (partly successfully) argued in favour of establishing equality bodies and creating positive obligations. Thus, the critique neglects the field it takes on, and does not accept the fact that anti-discrimination law and policy must be considered a field in its own right instead of the servant of social law and policy.
Now, this is more a summary than an abstract - since I realise that not everyone reads German.
Resumo:
Hyperiid amphipods (Order Amphipoda, Suborder Hyperiidea) are known to infest gelatinous zooplankton. However, the temporal backdrop to these associations is less clear, given that data are often gathered during discrete sampling events rather than over time. In general, hyperiids are considered to be pelagic: however, for individuals associated with metagenic jellyfishes in temperate shallow shelf seas, this may not always be the case, as the majority of their gelatinous hosts are present in the water column from spring to the onset of autumn. Here, we explored the temporal patterns of colonisation and overall duration of the association between Hyperia galba and 3 scyphozoan jellyfish species (Aurelia aurita, Cyanea capillata and C. lamarckii) in a temperate coastal system (Strangford Lough, Northern Ireland) during 2010 and 2012. Concomitantly, we used carbon and nitrogen stable isotope ratios to examine whether hyperiid infestation represented a permanent association with their host or was part of a more complex life history. We found that jellyfish were colonised by H. galba ca. 2 mo after they are first observed in the lough and that H. galba reached 100% prevalence in the different jellyfish species shortly before the medusae of each species disappeared from the water column. It is possible that some jellyfish overwintered in deeper water, prolonging the association between H. galba and their hosts. However, all the medusae sampled during the spring and early summer (whether they were newly emerged or had overwintered from the previous season) were not infected with hyperiids, suggesting that such behaviour was uncommon or that individuals had become dissociated from their host during the winter. Further evidence of temporary association came from stable isotope data, where δ13C and δ15N isotope ratios were indicative of feeding outside of their host prior to jellyfish colonisation. In combination, these findings suggest alternating habitat associations for H. galba, with the amphipods spending the majority of the year outside of the 3 scyphozoan species considered here.