71 resultados para Isotropic Käher Manifold
Resumo:
Over the last 40 years considerable progress has been made in understanding the complex behaviour of unsaturated soils. Research using constitutive modelling has extended the critical state framework and the concept of yielding in saturated soils to encompass unsaturated soils experiencing suction. However, validation testing of the framework for unsaturated soils has shown disagreement with the basic propositions. The main reason for this disparity is the anisotropic properties of the soil specimens tested as a result of preparation using one-dimensional compaction. The paper describes the detailed testing carried out to justify this statement. As part of the work presented, samples of unsaturated kaolin were prepared using isotropic compression. The suctions in these samples were reduced to predefined values by wetting under low isotropic loading. The pore size distributions, the pressure–volume relationships and yielding under subsequent isotropic loading are compared with tests on samples prepared by statically compressing kaolin into a one-dimensional compaction mould. The anisotropically compressed samples had initial water contents and specific volumes similar to those of the isotropically prepared samples and were also tested under reducing suctions; they exhibited distinctly different behaviour when tested under similar conditions. The results obtained from the isotropically prepared and tested samples have shown, probably for the first time, the existence of a unique normal compression surface that is not dependent on the initial conditions of the samples. The shape of the loading–collapse (LC) yield locus is shown to be different from the generally accepted form.
Resumo:
Validation of a framework for unsaturated soil behaviour has frequently resulted in disagreement with basic propositions. A primary reason for this disparity is considered to be attributable to the anisotropic properties of the soil specimens tested as a result of preparation using one-dimensional compaction. As part of the work presented, comparison is made between tests on samples of unsaturated kaolin prepared at identical specific volumes and specific water volumes using isotropic compression and one-dimensional compression. The suctions in the samples were reduced to predefined values by wetting under low isotropic loading in a triaxial cell. The samples were then taken through various stress paths to failure, defined as the critical state strength, while the suctions were held constant. Stress path tests were also performed on samples without reducing the suction to predefined values. In the latter, constant water mass tests, the suctions were allowed to vary and were measured using a psychrometer. The results of the tests at critical state are compared with the propositions of Wheeler and Sivakumar. The shear strengths of samples with isotropic previous history are shown to be significantly greater than those of samples with one-dimensional stress history when plotted against the mean net stress. The normal compression lines, critical state lines and yield characteristics are also shown to be significantly influenced by the previous stress history and are shown to be different for isotropically and one-dimensionally prepared samples.
Resumo:
The influence of compaction pressure, compaction water content and type of compaction (static or dynamic) on subsequent soil behaviour during wetting and isotropic loading has been investigated by conducting controlled-suction tests on samples of unsaturated compacted speswhite kaolin. The results are interpreted within the context of an elastoplastic framework for unsaturated soils, to examine which compaction-induced effects can be explained simply by variation in the initial state of the soil and which require that soils produced by different compaction procedures are modelled as fundamentally different materials. The compaction pressure influences initial state, by affecting the initial position of the yield surface, but it also influences, to a limited degree, the positions of the normal compression lines for different values of suction. The compaction water content influences the initial suction, but also has a significant influence (greater than does compaction pressure) on the positions of the normal compression lines. A change from static to dynamic compaction has no significant effect on subsequent behaviour
Resumo:
In this paper, a complete method for finite-difference time-domain modeling of rooms in 2-D using compact explicit schemes is presented. A family of interpolated schemes using a rectilinear, nonstaggered grid is reviewed, and the most accurate and isotropic schemes are identified. Frequency-dependent boundaries are modeled using a digital impedance filter formulation that is consistent with locally reacting surface theory. A structurally stable and efficient boundary formulation is constructed by carefully combining the boundary condition with the interpolated scheme. An analytic prediction formula for the effective numerical reflectance is given, and a stability proof provided. The results indicate that the identified accurate and isotropic schemes are also very accurate in terms of numerical boundary reflectance, and outperform directly related methods such as Yee's scheme and the standard digital waveguide mesh. In addition, one particular scheme-referred to here as the interpolated wideband scheme-is suggested as the best scheme for most applications.
Resumo:
The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement is carried out. in terms of the position variable z. It is shown that varies as similar to z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field line random walk for isotropic turbulence.