58 resultados para Isoforms
Resumo:
The murine VEGF gene is alternatively transcribed to yield the VEGF120, VEGF164, and VEGF188 isoforms, which differ in their potential to bind to heparan sulfate and neuropilin-1 and to stimulate endothelial growth. Here, their role in retinal vascular development was studied in mice selectively expressing single isoforms. VEGF164/164 mice were normal, healthy, and had normal retinal angiogenesis. In contrast, VEGF120/120 mice exhibited severe defects in vascular outgrowth and patterning, whereas VEGF188/188 mice displayed normal venular outgrowth but impaired arterial development. It is noteworthy that neuropilin-1, a receptor for VEGF164, was predominantly expressed in retinal arterioles. These findings reveal distinct roles of the various VEGF isoforms in vascular patterning and arterial development in the retina.
Resumo:
Members of the evolutionarily conserved septin family of genes are emerging as key components of several cellular processes including membrane trafficking, cytokinesis, and cell-cycle control events. SEPT9 has been shown to have a complex genomic architecture, such that up to 15 different isoforms are possible by the shuffling of five alternate amino termini and three alternate carboxy termini. Genomic and transcriptional alterations of SEPT9 have been associated with neoplasia. The present study has used a Sept9-specific antibody to determine the pattern of isoform expression in a range of tumour cell lines. Western blot analysis indicated considerable variation in the relative amounts and isoform content of Sept9. Immunofluorescence studies showed a range of patterns of cytoplasmic localization ranging from mainly particulate to mainly filamentous. Expression constructs were also generated for each amino terminal isoform to investigate the patterns of localization of individual isoforms and the effects on cells of ectopic expression. The present study shows that the epsilon isoform appears filamentous in this overexpression system while the remaining isoforms are particulate and cytoplasmic. Transient transfection of individual constructs into tumour cell lines results in cell-cycle perturbation with a G2/M arrest and dramatic growth suppression, which was greatest in cell lines with the lowest amounts of endogenous Sept9. Similar phenotypic observations were made with GTP-binding mutants of all five N-terminal variants of Sept9. However, dramatic differences were observed in the kinetics of accumulation of wild-type versus mutant septin protein in transfected cells. In conclusion, the present study shows that the expression patterns of Sept9 protein are very varied in a panel of tumour cell lines and the functional studies are consistent with a model of septin function as a component of a molecular scaffold that contributes to diverse cellular functions. Alterations in the levels of Sept9 protein by overexpression of individual isoforms can clearly perturb cellular behaviour and may thus provide a mechanistic explanation for observations of deranged septin expression in neoplasia. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
A common feature of the mammalian septin gene family is complex genomic architecture with multiple alternate splice variants. Septin 9 has 18 distinct transcripts encoding 15 polypeptides, with two transcripts (SEPT9_v4 and v4*) encoding the same polypeptide. We have previously reported that the ratio of these distinct transcripts is altered in neoplasia, with the v4 transcript being the usual form in normal cells but v4* becoming predominant in tumours. This led us to ask what the functional differences between these two transcripts might be. The 5'-UTRs of v4 and v4* have distinct 5' ends encoded by exons 1 beta (v4) and 1 zeta and 2 (v4*) and a common 3' region and initiating ATG encoded within exon 3. Here we show that the two mRNAs are translated with different efficiencies and that cellular stress can alter this. A putative internal ribosome entry site can be identified in the common region of the v4 and v4* 5'-UTRs and translation is modulated by an upstream open-reading frame in the unique region of the v4 5'-UTR. Germline mutations in hereditary neuralgic amyotrophy (HNA) map to the region which is common to the two UTRs. These mutations dramatically enhance the translational efficiency of the v4 5'-UTR, leading to elevated SEPT9_v4 protein under hypoxic conditions. Our data provide a mechanistic insight into how the HNA mutations can alter the fine control of SEPT9_v4 protein and its regulation under physiologically relevant conditions and are consistent with the episodic and stress-induced nature of the clinical features of HNA.
Resumo:
Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane(1). Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses(1). The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class I-A Pi3ks (ref. 2). Mice lacking only the p85a isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants(3). Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites, We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class I-A Pi3k catalytic subunits: nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.
Resumo:
Recent studies implicate the collagen receptor, glycoprotein VI (GPVI) in activation of platelet 12-lipoxygenase (p12-LOX). Herein, we show that GPVI-stimulated 12-hydro(peroxy)eicosatetraenoic acid (H(P)ETE) synthesis is inhibited by palmityl trifluromethyl ketone or oleyloxyethyl phosphocholine, but not bromoenol lactone, implicating secretory and cytosolic, but not calcium-independent phospholipase A(2) (PLA(2)) isoforms. Also, following GPVI activation, 12-LOX co-immunoprecipitates with both cytosolic and secretory PLA(2), (sPLA(2)). Finally, venoms containing sPLA(2) acutely activate p12-LOX in a dose-dependent manner. This study shows that platelet 12-H(P)ETE generation utilizes arachidonate substrate from both c- and sPLA(2) and that 12-LOX functionally associates with both PLA(2) isoforms. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
One important mechanism of membrane ion channels regulation involves their non-functional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on TRPM member, TRPM8, which functions as a cold receptor in sensory neurons, but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short-splice variants of TRPM8, termed short TRPM8a (sM8a) and short TRPM8ß (sM8ß). Our results show that both variants are in a closed configuration with the C-terminal tail of the full-size TRPM8 chan-nel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and its activity. Our findings, therefore, uncover a new mode of the regulation of TRPM8 channel by its splice variants.
Resumo:
Transient receptor potential (TRP) channels couple various environmental factors to changes in membrane potential, calcium influx, and cell signaling. They also integrate multiple stimuli through their typically polymodal activation. Thus, although the TRPM8 channel has been extensively investigated as the major neuronal cold sensor, it is also regulated by various chemicals, as well as by several short channel isoforms. Mechanistic understanding of such complex regulation is facilitated by quantitative single-channel analysis. We have recently proposed a single-channel mechanism of TRPM8 regulation by voltage and temperature. Using this gating mechanism, we now investigate TRPM8 inhibition in cell-attached patches using HEK293 cells expressing TRPM8 alone or coexpressed with its short sM8-6 isoform. This is compared with inhibition by the chemicals N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide (BCTC) and clotrimazole or by elevated temperature. We found that within the seven-state single-channel gating mechanism, inhibition of TRPM8 by short sM8-6 isoforms closely resembles inhibition by increased temperature. In contrast, inhibition by BCTC and that by clotrimazole share a different set of common features. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints.
Methods: SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography.
Results: A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005).
Conclusion: Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients.
Resumo:
Crizotinib, a dual anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition (MET) tyrosine kinase inhibitor, is currently being evaluated for the treatment of neuroblastoma. Its effects are thought to be mediated mainly via its activity against ALK. Although MET genomic/protein expression status might conceivably affect crizotinib efficacy, this issue has hitherto not received attention in neuroblastomas.
Resumo:
The Ov/Br septin gene, which is also a fusion partner of MLL in acute myeloid leukaemia, is a member of a family of novel GTP binding proteins that have been implicated in cytokinesis and exocytosis. In this study, we describe the genomic and transcriptional organization of this gene, detailing seventeen exons distributed over 240 kb of sequence. Extensive database analyses identified orthologous rodent cDNAs that corresponded to new, unidentified 5' splice variants of the Ov/Br septin gene, increasing the total number of such variants to six. We report that splicing events, occurring at non-canonical sites within the body of the 3' terminal exon, remove either 1801 bp or 1849 bp of non-coding sequence and facilitate access to a secondary open reading frame of 44 amino acids maintained near the end of the 3' UTR. These events constitute a novel coding arrangement and represent the first report of such a design being implemented by a eukaryotic gene. The various Ov/Br proteins either differ minimally at their amino and carboxy termini or are equivalent to truncated versions of larger isoforms. Northern analysis with an Ov/Br septin 3' UTR probe reveals three transcripts of 4.4, 4 and 3 kb, the latter being restricted to a sub-set of the tissues tested. Investigation of the identified Ov/Br septin isoforms by RT-PCR confirms a complex transcriptional pattern, with several isoforms showing tissue-specific distribution. To date, none of the other human septins have demonstrated such transcriptional complexity.
Resumo:
Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.