30 resultados para Iodine Isotopes
Resumo:
This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials
Resumo:
To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as d18O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of d18O shows seasonal variations of ~14‰ and a decrease of 0.23‰ ± 0.03‰ per 100 m elevation gain. d2H and d18O in precipitation are well correlated and plot close to the meteoric water line, as well as d2H and d18O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.
Resumo:
KLL dielectronic recombination resonances, where a free electron is captured into the L shell and at the same time a K shell electron is excited into the L shell, have been measured for open shell iodine ions by measuring the detected yield of escaping ions of various charge states and modeling the charge balance in an electron beam ion trap. In the modeling, the escape from the trap and multiple charge exchange were considered. Extracted ions were used to measure the charge balance in the trap. The different charge states were clearly separated, which along with the correction for artifacts connected with ion escape and multiple charge exchange made the open shell highly charged ion measurements of this type possible for the first time. From the measured spectra resonant strengths were obtained. The results were 4.27(39)x10(-19) cm(2) eV, 2.91(26)x10(-19) cm(2) eV, 2.39(22)x10(-19) cm(2) eV, 1.49(14)x10(-19) cm(2) eV and 7.64(76)x10(-20) cm(2) eV for the iodine ions from He-like to C-like, respectively.
Resumo:
The fast electrochemical reduction of iodine in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide, [C(4)mim][NTf2], is reported and the kinetics and mechanism of the process elucidated. Two reduction peaks were observed. The first reduction peak is assigned to the process
Resumo:
This study reports the effects of: the molecular weight ratio of poly(epsilon -caprolactone) (PCL) in blends containing polymer of high (50 000 g mol(-1)) and low (4000 g mol(-1)) molecular weight; the concentration (0, 1, and 5 wt-%) of poly(vinyl pyrrolidone/iodine) (PVP/I); and storage at 30 degreesC and 75% relative humidity; on the thermomechanical properties of films prepared by solvent evaporation from solutions containing both PCL and PVP/I. The tensile properties were found to be statistically dependent on the molecular weight ratio of PCL but not on the concentration of PVP/I. The reductions in tensile strength and elongation at break associated with increasing amounts of low molecular weight PCL were attributed to a reduction in the concentration of chain entanglements. No changes were observed in viscoelastic properties or the glass transition temperature. Following storage there were no changes in the tensile strength, glass transition temperature, or viscoelastic properties of the films; however, significant reductions in elongation at break were observed. It is suggested that this is due to hydrolytic chain scission of amorphous PCL. Inclusion of 5 wt-% PVP/I increased this process in films containing 100:0 and 80:20 high/low molecular weight PCL (but not 60.40), but the extent of this was small. This study highlighted significant aging properties of PCL in a moist atmosphere. Consequently, it is recommended that suitable packaging materials should be employed to control the exposure of PCL films to water during storage.