7 resultados para Intracerebroventricular


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central and peripheral cardiovascular effects of synthetic trout urotensin II (UII) were investigated in the conscious rainbow trout. Intracerebroventricular injection of 50 pmol UII produced a slight (3%) but significant (P < 0.05) increase in heart rate but had no effect on mean arterial blood pressure. Injection of 500 pmol UII icy produced a significant (P < 0.05) rise (8%) in blood pressure with no change in heart rate. In contrast to the weak presser effect of centrally administered UII, intra-arterial injection of UII produced a dose-dependent increase in arterial blood pressure and decrease in heart rate with significant (P < 0.05) effects on both parameters observed at a dose of 25 pmol. Higher doses of the peptide produced a sustained decrease in cardiac output that accompanied the bradycardia and rise in arterial blood pressure. The UII-induced bradycardia, but not the increase in pressure, was abolished by pretreatment with phentolamine. Trout UII produced a sustained and dose-dependent contraction of isolated vascular rings prepared from trout efferent branchial [-log 50% of the concentration producing maximal contraction (pD(2)) = 8.30] and celiacomesenteric (pD(2) = 8.22) arteries but was without effects on vascular rings from the anterior cardinal vein. The data indicate that the presser effect of UII in trout is mediated predominantly, if not exclusively, by an increase in systemic vascular resistance. The UII-induced hypertensive response does not seem to involve release of catecholamines, but the bradycardia may arise from adrenergic-mediated activation of cardioinhibitory baroreflexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligomers of beta-amyloid (Aß) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aß-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aß monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aß1-42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aß1-42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aß and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prefibrillar assembly of amyloid-ß (Aß) is a major event underlying the development of neuropathology and dementia in Alzheimer's disease (AD). This study determined the neuroprotective properties of an orally bioavailable Aß synaptotoxicity inhibitor, SEN1576. Binding of SEN1576 to monomeric Aß 1–42 was measured using surface plasmon resonance. Thioflavin-T and MTT assays determined the ability of SEN1576 to block Aß 1–42-induced aggregation and reduction in cell viability, respectively. In vivo long-term potentiation (LTP) determined effects on synaptic toxicity induced by intracerebroventricular (i.c.v.) injection of cell-derived Aß oligomers. An operant behavioural schedule measured effects of oral administration following i.c.v. injection of Aß oligomers in normal rats. SEN1576 bound to monomeric Aß 1–42, protected neuronal cells exposed to Aß 1–42, reduced deficits in in vivo LTP and behaviour. SEN1576 exhibits the necessary features of a drug candidate for further development as a disease modifying treatment for the early stages of AD-like dementia.