43 resultados para Intertidal flats
Resumo:
1. As many species of marine benthic invertebrates have a limited capacity for movement as adults, dispersal mode is often considered as a determinant of geographical ranges, genetic structure and evolutionary history. Species that reproduce without a larval stage can only disperse by floating or rafting. It is proposed that the colonization processes associated with such direct developing species result in spatial distributions that show relatively greater fine scale patchiness than the distributions of species with a larval dispersal stage. This hypothesis was tested by collecting molluscs at different spatial scales in the Isle of Man. 2. Spatial distribution patterns supported the predictions based on dispersal mode. Estimated variance components for species with larval dispersal suggested that the majority of the spatial variation was associated with variation between shores. In comparison, there was relatively more variability within shores for abundance counts of species with direct development. 3. Multivariate analyses reflected the univariate results. An assemblage of direct developers provided a better discrimination between sites (100 m separation) but the group of species with larval dispersal gave a clearer separation of shores (separated by several km). 4. The fine scale spatial structure of direct developing species was reflected in higher average species diversity within quadrats. Species richness also reflected dispersal mode, with a higher fraction of the regional species pool present for direct developers in comparison to species with larval dispersal. This may reflect the improved local persistence of taxa that avoid the larval dispersal stage.
Resumo:
Nitrogen metabolism was examined in the intertidal seaweeds Fucus vesiculosus, Fucus serratus, Fucus spiralis and Laminaria digitata in a temperate Irish sea lough. Internal NO3- storage, total N content and nitrate reductase activity (NRA) were most affected by ambient NO3-, with highest values in winter, when ambient NO3- was maximum, and declined with NO3- during summer. In all species, NRA was six times higher in winter than in summer, and was markedly higher in Fucus species (e.g. 256 ± 33 nmol NO3- min1 g1 in F. vesiculosus versus 55 ± 17 nmol NO3- min1 g1 in L. digitata). Temperature and light were less important factors for N metabolism, but influenced in situ photosynthesis and respiration rates. NO3- assimilating capacity (calculated from NRA) exceeded N demand (calculated from net photosynthesis rates and C : N ratios) by a factor of 0.7–50.0, yet seaweeds stored significant NO3- (up to 40–86 µmol g1). C : N ratio also increased with height in the intertidal zone (lowest in L. digitata and highest in F. spiralis), indicating that tidal emersion also significantly constrained N metabolism. These results suggest that, in contrast to the tight relationship between N and C metabolism in many microalgae, N and C metabolism could be uncoupled in marine macroalgae, which might be an important adaptation to the intertidal environment.
Resumo:
Geographically referenced databases of species records are becoming increasingly available. Doubts over the heterogeneous quality of the underlying data may restrict analyses of such collated databases. We partitioned the spatial variation in species richness of littoral algae and molluscs from the UK National Biodiversity Network database into a smoothed mesoscale component and a local component. Trend surface analysis (TSA) was used to define the mesoscale patterns of species richness, leaving a local residual component that lacked spatial autocorrelation. The analysis was based on 10 km grid squares with 115035 records of littoral algae (729 species) and 66879 records of littoral molluscs (569 species). The TSA identified variation in algal and molluscan species richness with a characteristic length scale of approximately 120 km. Locations of the most species-rich grid squares were consistent with the southern and western bias of species richness in the UK marine flora and fauna. The TSA also identified areas which showed significant changes in the spatial pattern of species richness: breakpoints, which correspond to major headlands along the south coast of England. Patterns of algal and molluscan species richness were broadly congruent. Residual variability was strongly influenced by proxies of collection effort, but local environmental variables including length of the coastline and variability in wave exposure were also important. Relative to the underlying trend, local species richness hotspots occurred on all coasts. While there is some justification for scepticism in analyses of heterogeneous datasets, our results indicate that the analysis of collated datasets can be informative.
Resumo:
The molluscan fauna of an intertidal sand beach in Princess Royal Harbour, W.A.. is divided into two associations. The upper association, located between +0.10 and +0.59 m relative to tidal datum, is characterized by Hydrococcus graniformis and Batillariella estuarina. The lower assemblage, between +0.09 and -0.29 m is dominated numerically by Zeacumantus diemenensis and Katelysia scalarina. The assemblages are equivalent to the midlittoral- and sublittoral-fringe groupings described on both sandy and rocky shores by other authors. There is no supralittoral-fringe component in the molluscan fauna ofprincess Royal Harbour. The break between the two assemblages occurs at + 0.1 m, just below the minimum tide level in the area. Possible reasons for the zonation patterns are discussed and compared with other studies of intertidal zonation on sandy shores.
Resumo:
Immersed shannies (Blennius pholis) showed peak locomotory activity coincident with daylight high tides. Emersion caused cessation of breathing and bradycardia though Q02 was little affected. Q02 fell, however, when the abdomen was enclosed in an impermeable sheath to block cutaneous respiration. Gulping of air into the extensively vascular oesophagus probably also acts as a means of aerial respiration. Reimmersion of fish caused a transient bradycardia followed by a tachycardia and a fall in Q02 followed subsequently by a rise. The results are discussed in relation to the behavioural, circulatory, respiratory and morphological adaptations of the shanny to the intertidal habitat.
Resumo:
Many assemblages contain numerous rare species, which can show large increases in abundances. Common species can become rare. Recent calls for experimental tests of the causes and consequences of rarity prompted us to investigate competition between co-existing rare and common species of intertidal gastropods. In various combinations, we increased densities of rare gastropod species to match those of common species to evaluate effects of intra- and interspecific competition on growth and survival of naturally rare or naturally common species at small and large densities. Rarity per se did not cause responses of rare species to differ from those of common species. Rare species did not respond to the abundances of other rare species, nor show consistently different responses from those of common species. Instead, individual species responded differently to different densities, regardless of whether they are naturally rare or abundant. This type of experimental evidence is important to be able to predict the effects of increased environmental variability on rare as opposed to abundant species and therefore, ultimately, on the structure of diverse assemblages. © 2012 Inter-Research.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
Exploitation of intertidal Zostera spp by Pale-bellied Brent geese Branta bernicla hrota in Strangford Lough, Co. Down, was studied with respect to feeding method employed, plant parts exploited, the quality of the forage, and assimilation efficiency. Most Brent geese feeding activity involved digging behaviour, which, along with faecal analyses, indicated that birds were exploiting above (shoot) and below ground portions (rhizome) of the food plant. Nutritional information indicated that while rhizome was lower in overall energy, it contained more accessible energy in the form of water soluble carbohydrate and was lower in indigestible fibre than shoot. Feeding experiments indicated that Brent geese feeding on whole plants of Zostera noltii achieved 43% assimilation efficiency. Dig feeding of intertidal Zostera spp by Brent geese is likely to significantly increase the amount and quality of the forage available. Why dig feeding is not employed on all intertidal systems, and its potential effects on the food plants are discussed.
Resumo:
Mixed flocks of pale-bellied Brent geese (Branta bernicla hrota) and wigeon (Anas penelope L.) feeding on intertidal Zostera spp were studied during October 1993 with respect to tidal position, feeding method and duration, and competitive: interactions within and between species. Owing to many disturbance incidents affecting the use of the site by wildfowl, only complete data on flow tides were presented. Brent geese fed over a greater period of the tidal cycle than wigeon. Differences in feeding methods indicated that Brent geese exploited the rhizomes, which are energetically more profitable than the shoot on which wigeon fed. Aggressive interactions were recorded within species but there were no records of aggression between species. More subtle competition for space, however, may have occurred during feeding. Brent geese could reach Zostera spp For a short period after increasing depth of water prevented access by wigeon. However, individual wigeon were observed foraging near feeding Brent geese, picking up the scraps oi material discarded by the latter, and small numbers of wigeon may benefit from the presence of the geese. These benefits for some individual wigeon are not considered to compensate for the disadvantages to the latter species population as a whole in feeding on poorer-quality food for a shorter period of the tidal cycle. This disadvantage is likely to have contributed to the decline in the wigeon population on Strangford Lough, Co. Down, while numbers of Brent geese have been maintained at a high level.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
Studies of trait-mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher-order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti-predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de-stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes.
Resumo:
The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single-nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine-scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15-150 km in south-west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation-with-migration analysis indicated extensive local-scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long-term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long-term demographic stability through previous changes in the Earth's climate. (C) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 589597.