6 resultados para Internet generation
Resumo:
This paper discusses methods of using the Internet as a communications media between distributed generator sites to provide new forms of loss-of-mains protection. An analysis of the quality of the communications channels between several nodes on the network was carried out experimentally. It is shown that Internet connections in urban environments are already capable of providing real-time power system protection, whilst rural Internet connections are borderline suitable but could not yet be recommended as a primary method of protection. Two strategies of providing loss-of-mains across Internet protocol are considered, broadcast of a reference frequency or phasor representing the utility and an Internet based inter-tripping scheme.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
This paper presents a lookup circuit with advanced memory techniques and algorithms that examines network packet headers at high throughput rates. Hardware solutions and test scenarios are introduced to evaluate the proposed approach. The experimental results show that the proposed lookup circuit is able to achieve at least 39 million packet header lookups per second, which facilitates the application of next-generation stateful packet classifications at beyond 20Gbps internet traffic throughput rates.
Resumo:
Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.