278 resultados para Intermittently Driven Damped Oscillator
Resumo:
We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.
Resumo:
Context. We investigate the growth of hydromagnetic waves driven by streaming cosmic rays in the precursor environment of a supernova remnant shock.
Aims. It is known that transverse waves propagating parallel to the mean magnetic field are unstable to anisotropies in the cosmic ray distribution, and may provide a mechanism to substantially amplify the ambient magnetic field. We quantify the extent to which temperature and ionisation fractions modify this picture.
Methods. Using a kinetic description of the plasma we derive the dispersion relation for a collisionless thermal plasma with a streaming cosmic ray current. Fluid equations are then used to discuss the effects of neutral-ion collisions.
Results. We calculate the extent to which the environment into which the cosmic rays propagate influences the growth of the magnetic field, and determines the range of possible growth rates.
Conclusions. If the cosmic ray acceleration is efficient, we find that very large neutral fractions are required to stabilise the growth of the non-resonant mode. For typical supernova parameters in our Galaxy, thermal effects do not significantly alter the growth rates. For weakly driven modes, ion-neutral damping can dominate over the instability at more modest ionisation fractions. In the case of a supernova shock interacting with a molecular clouds, such as in RX J1713.7-3946, with high density and low ionisation, the modes can be rapidly damped.
Resumo:
Numerical sound synthesis is often carried out using the finite difference time domain method. In order to analyse the stability of the derived models, energy methods can be used for both linear and nonlinear settings. For Hamiltonian systems the existence of a conserved numerical energy-like quantity can be used to guarantee the stability of the simulations. In this paper it is shown how to derive similar discrete conservation laws in cases where energy is dissipated due to friction or in the presence of an energy source due to an external force. A damped harmonic oscillator (for which an analytic solution is available) is used to present the proposed methodology. After showing how to arrive at a conserved quantity, the simulation of a nonlinear single reed shows an example of an application in the context of musical acoustics.
Resumo:
Electron-impact excitation collision strengths for transitions between all singly excited levels up to the n = 4 shell of helium-Eke argon and the n = 4 and 5 shells of helium-like iron have been calculated using a radiation-damped R-matrix approach. The theoretical collision strengths have been examined and associated with their infinite-energy limit values to allow the preparation of Maxwell-averaged effective collision strengths. These are conservatively considered to be accurate to within 20% at all temperatures, 3 x 10(5)-3 x 10(8) K forAr(16+) and 10(6)-10(9) K for Fe24+. They have been compared with the results of previous studies, where possible, and we find a broad accord. The corresponding rate coefficients are required for use in the calculation of derived, collisional-radiative, effective emission coefficients for helium-like lines for diagnostic application to fusion and astrophysical plasmas. The uncertainties in the fundamental collision data have been used to provide a critical assessment of the expected resultant uncertainties in such derived data, including redistributive and cascade collisional-radiative effects. The consequential uncertainties in the parts of the effective emission coefficients driven by excitation from the ground levels for the key w, x, y and z lines vary between 5% and 10%. Our results remove an uncertainty in the reaction rates of a key class of atomic processes governing the spectral emission of helium-like ions in plasmas.
Resumo:
The processing of motion information by the visual system can be decomposed into two general stages; point-by-point local motion extraction, followed by global motion extraction through the pooling of the local motion signals. The direction aftereVect (DAE) is a well known phenomenon in which prior adaptation to a unidirectional moving pattern results in an exaggerated perceived direction diVerence between the adapted direction and a subsequently viewed stimulus moving in a diVerent direction. The experiments in this paper sought to identify where the adaptation underlying the DAE occurs within the motion processing hierarchy. We found that the DAE exhibits interocular transfer, thus demonstrating that the underlying adapted neural mechanisms are binocularly driven and must, therefore, reside in the visual cortex. The remaining experiments measured the speed tuning of the DAE, and used the derived function to test a number of local and global models of the phenomenon. Our data provide compelling evidence that the DAE is driven by the adaptation of motion-sensitive neurons at the local-processing stage of motion encoding. This is in contrast to earlier research showing that direction repulsion, which can be viewed as a simultaneous presentation counterpart to the DAE, is a global motion process. This leads us to conclude that the DAE and direction repulsion reflect interactions between motion-sensitive neural mechanisms at different levels of the motion-processing hierarchy.