7 resultados para Interleaved dacites and komatiites
Resumo:
The most promising way to maintain reliable data transfer across the rapidly fluctuating channels used by next generation multiple-input multiple-output communications schemes is to exploit run-time variable modulation and antenna configurations. This demands that the baseband signal processing architectures employed in the communications terminals must provide low cost and high performance with runtime reconfigurability. We present a softcore-processor based solution to this issue, and show for the first time, that such programmable architectures can enable real-time data operation for cutting-edge standards
such as 802.11n; furthermore, by exploiting deep processing pipelines and interleaved task execution, the cost and performance of these architectures is shown to be on a par with traditional dedicated circuit based solutions. We believe this to be the first such programmable architecture to achieve this, and the combination of implementation efficiency and programmability makes this implementation style the most promising approach for hosting such dynamic architectures.
Resumo:
This study provides a general diversity analysis for joint complex diversity coding (CDC) and channel coding-based space-time-frequency codeing is provided. The mapping designs from channel coding to CDC are crucial for efficient exploitation of the diversity potential. This study provides and proves a sufficient condition of full diversity construction with joint three-dimensional CDC and channel coding, bit-interleaved coded complex diversity coding and symbol-interleaved coded complex diversity coding. Both non-iterative and iterative detections of joint channel code and CDC transmission are investigated. The proposed minimum mean-square error-based iterative soft decoding achieves the performance of the soft sphere decoding with reduced complexity.
Resumo:
Massively parallel networks of highly efficient, high performance Single Instruction Multiple Data (SIMD) processors have been shown to enable FPGA-based implementation of real-time signal processing applications with performance and
cost comparable to dedicated hardware architectures. This is achieved by exploiting simple datapath units with deep processing pipelines. However, these architectures are highly susceptible to pipeline bubbles resulting from data and control hazards; the only way to mitigate against these is manual interleaving of
application tasks on each datapath, since no suitable automated interleaving approach exists. In this paper we describe a new automated integrated mapping/scheduling approach to map algorithm tasks to processors and a new low-complexity list scheduling technique to generate the interleaved schedules. When applied to a spatial Fixed-Complexity Sphere Decoding (FSD) detector
for next-generation Multiple-Input Multiple-Output (MIMO) systems, the resulting schedules achieve real-time performance for IEEE 802.11n systems on a network of 16-way SIMD processors on FPGA, enable better performance/complexity balance than current approaches and produce results comparable to handcrafted implementations.
Resumo:
Fonualei is unusual amongst subaerial volcanoes in the Tonga arc because it has erupted dacitic vesicular lavas, tuffs and phreomagmatic deposits for the last 165 years. The total volume of dacite may approach 5 km(3) and overlies basal basaltic andesite and andesite lavas that are constrained to be less than a few millennia in age. All of the products are crystal-poor and formed from relatively low-viscosity magmas inferred to have had temperatures of 1100-1000 degrees C, 2-4 wt % H2O and oxygen fugacities 1-2 log units above the quartz-fayalite-magnetite buffer. Major and trace element data, along with Sr-Nd-Pb and U-Th-Ra isotope data, are used to assess competing models for the origin of the dacites. Positive correlations between Sc and Zr and Sr rule out evolution of the within-dacite compositional array by closed-system crystal fractionation of a single magma batch. An origin by partial melting of lower crustal amphibolites cannot reproduce these data trends or, arguably, any of the dacites either. Instead, we develop a model in which the dacites reflect mixing between two dacitic magmas, each the product of fractional crystallization of basaltic andesite magmas formed by different degrees of partial melting. Mixing was efficient because the two magmas had similar temperatures and viscosities. This is inferred to have occurred at shallow (2-6 km) depths beneath the volcano. U-Th-Ra disequilibria in the basaltic andesite and andesite indicate that the parental magmas had fluids added to their mantle source regions less than 8 kyr ago and that fractionation to the dacitic compositions took less than a few millennia. The 165 year eruption period for the dacites implies that mixing occurred on a similar timescale, possibly during ascent in conduits. The composition of the dacites renders them unsuitable candidates as contributors to average continental crust.
Resumo:
In this paper, we first provide a theoretical validation for a low-complexity transmit diversity algorithm which employs only one RF chain and a low-complexity switch for transmission. Our theoretical analysis is compared to the simulation results and proved to be accurate. We then apply the transmit diversity scheme to multiple-input and multiple-output (MIMO) systems with bit-interleaved coded modulation (BICM). © 2012 IEEE.
Resumo:
A new type of active frequency selective surface (AFSS) is proposed to realise a voltage controlled bi-state (transparent and reflecting) response at the specified frequencies. The bi-state switching is achieved by combining a passive array of interleaved spiral slots in conducting screens and active dipole arrays with integrated pin diodes at the opposite sides of a thin dielectric substrate. Simulation results show that such active surfaces have high isolation between the transparency and reflection states, while retaining the merits of substantially sub-wavelength response of the unit cell and large fractional bandwidths (FBWs) inherent to the original passive interwoven spiral arrays. Potential applications include reconfigurable and controllable electromagnetic architecture of buildings.
Resumo:
Research in various fields has shown that students benefit from teacher action demonstrations during instruction, establishing the need to better understand the effectiveness of different demonstration types across student proficiency levels. This study centres upon a piano learning and teaching environment in which beginners and intermediate piano students (N=48) learning to perform a specific type of staccato were submitted to three different (group exclusive) teaching conditions: audio-only demonstration of the musical task; observation of the teacher's action demonstration followed by student imitation (blockedobservation); and observation of the teacher's action demonstration whilst alternating imitation of the task with the teacher's performance (interleaved-observation). Learning was measured in relation to students' range of wrist amplitude (RWA) and ratio of sound and inter-sound duration (SIDR) before, during and after training. Observation and imitation of the teacher’s action demonstrations had a beneficial effect on students' staccato knowledge retention at different times after training: students submitted to interleaved-observation presented significantly shorter note duration and larger wrist rotation, and as such, were more proficient at the learned technique in each of the lesson and retention tests than students in the other learning conditions. There were no significant differences in performance or retention for students of different proficiency levels. These findings have relevant implications for instrumental music pedagogy and other contexts where embodied action is an essential aspect of the learning process.