86 resultados para Inter-region power flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method for complex power flow tracing that can be used for allocating the transmission loss to loads or generators. Two algorithms for upstream tracing (UST) and downstream tracing (DST) of the complex power are introduced. UST algorithm traces the complex power extracted by loads back to source nodes and assigns a fraction of the complex power flow through each line to each load. DST algorithm traces the output of the generators down to the sink nodes determining the contributions of each generator to the complex power flow and losses through each line. While doing so, active- and reactive-power flows as well as complex losses are considered simultaneously, not separately as most of the available methods do. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses are carried out using an equation, which has a physical basis, and considers the coupling between active- and reactive-power flows as well as the cross effects of active and reactive powers on active and reactive losses. The tracing algorithms introduced can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method for transmission loss allocation. The method is based on tracing the complex power flow through the network and determining the share of each load on the flow and losses through each line. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses is carried out using an equation, which has a physical basis, and considers the coupling between active and reactive power flows as well as the cross effects of active and reactive power on active and reactive losses. A tracing algorithm which can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two case studies are presented in this paper to demonstrate the impact of different power system operation conditions on the power oscillation frequency modes in the Irish power system. A simplified 2 area equivalent of the Irish power system has been used in this paper, where area 1 represents the Republic of Ireland power system and area 2 represents the Northern Ireland power system.

The potential power oscillation frequency modes on the interconnector during different operation conditions have been analysed in this paper. The main objective of this paper is to analyse the influence of different operation conditions involving wind turbine generator (WTG) penetration on power oscillation frequency modes using phasor measurement unit (PMU) data.

Fast Fourier transform (FFT) analysis was performed to identify the frequency oscillation mode while correlation coefficient analysis was used to determine the source of the frequency oscillation. The results show that WTG, particularly fixed speed induction generation (FSIG), gives significant contribution to inter-area power oscillation frequency modes during high WTG operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the integration of combined heat and power (CHP) units, air-conditioners and gas boilers, power, gas, and heat systems are becoming tightly linked to each other in the integrated community energy system (ICES). Interactions among the three systems are not well captured by traditional methods. To address this issue, a hybrid power-gas-heat flow calculation method was developed in this paper. In the proposed method, an energy hub model was presented to describe interactions among the three systems incorporating various CHP operating modes. In addition, three operating modes were proposed for the ICES including fully decoupled, partially coupled, and fully coupled. Numerical results indicated that the proposed algorithm can be used in the steady-state analysis of the ICES and reflect interactions among various energy systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to determine the local boundary of voltage stability region in a cut-set power space (CVSR) is presented. Power flow tracing is first used to determine the generator-load pair most sensitive to each branch in the interface. The generator-load pairs are then used to realize accurate small disturbances by controlling the branch power flow in increasing and decreasing directions to obtain new equilibrium points around the initial equilibrium point. And, continuous power flow is used starting from such new points to get the corresponding critical points around the initial critical point on the CVSR boundary. Then a hyperplane cross the initial critical point can be calculated by solving a set of linear algebraic equations. Finally, the presented method is validated by some systems, including New England 39-bus system, IEEE 118-bus system, and EPRI-1000 bus system. It can be revealed that the method is computationally more efficient and has less approximation error. It provides a useful approach for power system online voltage stability monitoring and assessment. This work is supported by National Natural Science Foundation of China (No. 50707019), Special Fund of the National Basic Research Program of China (No. 2009CB219701), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200439), Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000), National Major Project of Scientific and Technical Supporting Programs of China During the 11th Five-year Plan Period (No. 2006BAJ03A06). ©2009 State Grid Electric Power Research Institute Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations has been investigated. The authors introduced data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. Through monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the two systems. The impact of tower shadow on the output power from a wind farm was analysed using data recorded on site. A case study investigates the effect on the system of the removal of a large fixed-speed wind farm. Conclusions are drawn on the impact that conventional generation and the output from fixed-speed wind farms have on the stability of the Irish power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes new direct power control (DPC) strategies for three-phase DC/AC converters with improved dynamic response and steady-state performance. As with an electrical machine, source and converter flux which equal the integration of the respective source and converter voltage are used to define active and reactive power flow. Optimization of the look-up-table used in conventional DPC is outlined first, to improve the power control and reduce the current distortion. Then constant switching frequency DPC is developed where the required converter voltage vector within a fixed half switching period is calculated directly from the active and reactive power errors. Detailed angle compensation due to the finite sampling frequency and the use of integral controller to further improve the power control accuracy, are described. Both simulation and experimental results are used to compare conventional DPC and vector control, and to demonstrate the effectiveness and robustness of the proposed control strategies during active and reactive power steps, and line inductance variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is acknowledged that wind power is a stochastic energy source compared to hydroelectric generation which is easily scheduled. In this paper a scheme for coordinating wind power plant and hydroelectric power plant is presented by using PMUs to measure and control the state of wind and hydro power plants. Hydroelectric generation is proposed as a method of energy reserve and compensation in the context of wind power fluctuation in order to avoid full or partial curtailment of wind generation to benefit wind providers. The feasibility of this proposed scheme is investigated by power flow calculation and stability analysis using the IEEE 30-bus power system model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations was investigated. The authors used data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. By monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the Northern Ireland electricity system and that of the electricity supply board. Analysis was preformed to determine the relationship (if any) between the inter-area oscillation and the observed wind power generation at the corresponding time. Subsequently, regression analysis was introduced to model this relationship between the FFT output and the wind power generation. The effect of conventional generators on the magnitude and frequency of the inter-area oscillation was also considered.