2 resultados para Intensity ratios
Resumo:
The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the "Si ii disaster," and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity () may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.
Resumo:
The aim of this study is to clarify if the assumption of ionization equilibrium and a Maxwellian electron energy distribution is valid in flaring solar plasmas. We analyze the 2014 December 20 X1.8 flare, in which the \ion{Fe}{xxi} 187~\AA, \ion{Fe}{xxii} 253~\AA, \ion{Fe}{xxiii} 263~\AA\ and \ion{Fe}{xxiv} 255~\AA\ emission lines were simultaneously observed by the EUV Imaging Spectrometer onboard the Hinode satellite. Intensity ratios among these high temperature Fe lines are compared and departures from isothermal conditions and ionization equilibrium examined. Temperatures derived from intensity ratios involving these four lines show significant discrepancies at the flare footpoints in the impulsive phase, and at the looptop in the gradual phase. Among these, the temperature derived from the \ion{Fe}{xxii}/\ion{Fe}{xxiv} intensity ratio is the lowest, which cannot be explained if we assume a Maxwellian electron distribution and ionization equilibrium, even in the case of a multi-thermal structure. This result suggests that the assumption of ionization equilibrium and/or a Maxwellian electron energy distribution can be violated in evaporating solar plasma around 10MK.