6 resultados para Injury data
Resumo:
OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI21) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI21 is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI21 at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at -70 degrees C for later determination of plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar-arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI21 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI21 ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome.
Resumo:
Following brain injury there is often a prolonged period of deteriorating psychological condition, despite neurological stability or improvement. This is presumably consequent to the remission of anosognosia and the realisation of permanently worsened status. This change is hypothesised to be directed partially by the socially mediated processes which play a role in generating self-awareness and which here direct the reconstruction of the self as a permanently injured person. However, before we can understand this process of redevelopment, we need an unbiassed technique to monitor self-awareness. Semi-structured interviews were conducted with 30 individuals with long-standing brain injuries to capture their spontaneous complaints and their level of insight into the implications of their difficulties. The focus was on what the participants said in their own words, and the extent to which self-knowledge of difficulties was spontaneously salient to the participants. Their responses were subjected to content analysis. Most participants were able to say that they had brain injuries and physical difficulties, many mentioned memory and attentional problems and a few made references to a variety of emotional disturbances. Content analysis of data from unbiassed interviews can reveal the extent to which people with brain injuries know about their difficulties. Social constructionist accounts of self-awareness and recovery are supported.
Resumo:
Aims/hypothesis: In previous studies we have shown that extravasated, modified LDL is associated with pericyte loss, an early feature of diabetic retinopathy (DR). Here we sought to determine detailed mechanisms of this LDLinduced pericyte loss.
Methods: Human retinal capillary pericytes (HRCP) were exposed to ‘highly-oxidised glycated’ LDL (HOG-LDL) (a model of extravasated and modified LDL) and to 4-hydroxynonenal or 7-ketocholesterol (components of oxidised LDL), or to native LDL for 1 to 24 h with or without 1 h of pretreatment with inhibitors of the following: (1) the scavenger receptor (polyinosinic acid); (2) oxidative stress (N-acetyl cysteine); (3) endoplasmic reticulum (ER) stress (4-phenyl butyric acid); and (4) mitochondrial dysfunction (cyclosporin A). Oxidative stress, ER stress, mitochondrial dysfunction, apoptosis and autophagy were assessed using techniques including western blotting, immunofluorescence, RT-PCR, flow cytometry and TUNEL assay. To assess the relevance of the results in vivo, immunohistochemistry was used to detect the ER stress chaperon, 78 kDa glucose-regulated protein, and the ER sensor, activating transcription factor 6, in retinas from a mouse model of DR that mimics exposure of the retina to elevated glucose and elevated LDL levels, and in retinas from human participants with and without diabetes and DR.
Results: Compared with native LDL, HOG-LDL activated oxidative and ER stress in HRCP, resulting in mitochondrial dysfunction, apoptosis and autophagy. In a mouse model of diabetes and hyperlipidaemia (vs mouse models of either condition alone), retinal ER stress was enhanced. ER stress was also enhanced in diabetic human retina and correlated with the severity of DR.
Conclusions/interpretation: Cell culture, animal, and human data suggest that oxidative stress and ER stress are induced by modified LDL, and are implicated in pericyte loss in DR.
Resumo:
Background: Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI.
Methods/Design: Patients fulfilling the American-European Consensus Conference Definition of ALI will be randomized in a 1: 1 ratio to receive enteral simvastatin 80 mg or placebo once daily for a maximum of 28 days. Allocation to randomized groups will be stratified with respect to hospital of recruitment and vasopressor requirement. Data will be recorded by participating ICUs until hospital discharge, and surviving patients will be followed up by post at 3, 6 and 12 months post randomization. The primary outcome is number of ventilator-free days to day 28. Secondary outcomes are: change in oxygenation index and sequential organ failure assessment score up to day 28, number of non pulmonary organ failure free days to day 28, critical care unit mortality; hospital mortality; 28 day post randomization mortality and 12 month post randomization mortality; health related quality of life at discharge, 3, 6 and 12 months post randomization; length of critical care unit and hospital stay; health service use up to 12 months post-randomization; and safety. A total of 540 patients will be recruited from approximately 35 ICUs in the UK and Ireland. An economic evaluation will be conducted alongside the trial. Plasma and urine samples will be taken up to day 28 to investigate potential mechanisms by which simvastatin might act to improve clinical outcomes.
Resumo:
Background The use of technology in healthcare settings is on the increase and may represent a cost-effective means of delivering rehabilitation. Reductions in treatment time, and delivery in the home, are also thought to be benefits of this approach. Children and adolescents with brain injury often experience deficits in memory and executive functioning that can negatively affect their school work, social lives, and future occupations. Effective interventions that can be delivered at home, without the need for high-cost clinical involvement, could provide a means to address a current lack of provision. We have systematically reviewed studies examining the effects of technology-based interventions for the rehabilitation of deficits in memory and executive functioning in children and adolescents with acquired brain injury. Objectives To assess the effects of technology-based interventions compared to placebo intervention, no treatment, or other types of intervention, on the executive functioning and memory of children and adolescents with acquired brain injury. Search methods We ran the search on the 30 September 2015. We searched the Cochrane Injuries Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), EMBASE Classic + EMBASE (OvidSP), ISI Web of Science (SCI-EXPANDED, SSCI, CPCI-S, and CPSI-SSH), CINAHL Plus (EBSCO), two other databases, and clinical trials registers. We also searched the internet, screened reference lists, and contacted authors of included studies. Selection criteria Randomised controlled trials comparing the use of a technological aid for the rehabilitation of children and adolescents with memory or executive-functioning deficits with placebo, no treatment, or another intervention. Data collection and analysis Two review authors independently reviewed titles and abstracts identified by the search strategy. Following retrieval of full-text manuscripts, two review authors independently performed data extraction and assessed the risk of bias. Main results Four studies (involving 206 participants) met the inclusion criteria for this review. Three studies, involving 194 participants, assessed the effects of online interventions to target executive functioning (that is monitoring and changing behaviour, problem solving, planning, etc.). These studies, which were all conducted by the same research team, compared online interventions against a 'placebo' (participants were given internet resources on brain injury). The interventions were delivered in the family home with additional support or training, or both, from a psychologist or doctoral student. The fourth study investigated the use of a computer program to target memory in addition to components of executive functioning (that is attention, organisation, and problem solving). No information on the study setting was provided, however a speech-language pathologist, teacher, or occupational therapist accompanied participants. Two studies assessed adolescents and young adults with mild to severe traumatic brain injury (TBI), while the remaining two studies assessed children and adolescents with moderate to severe TBI. Risk of bias We assessed the risk of selection bias as low for three studies and unclear for one study. Allocation bias was high in two studies, unclear in one study, and low in one study. Only one study (n = 120) was able to conceal allocation from participants, therefore overall selection bias was assessed as high. One study took steps to conceal assessors from allocation (low risk of detection bias), while the other three did not do so (high risk of detection bias). Primary outcome 1: Executive functioning: Technology-based intervention versus placebo Results from meta-analysis of three studies (n = 194) comparing online interventions with a placebo for children and adolescents with TBI, favoured the intervention immediately post-treatment (standardised mean difference (SMD) -0.37, 95% confidence interval (CI) -0.66 to -0.09; P = 0.62; I2 = 0%). (As there is no 'gold standard' measure in the field, we have not translated the SMD back to any particular scale.) This result is thought to represent only a small to medium effect size (using Cohen’s rule of thumb, where 0.2 is a small effect, 0.5 a medium one, and 0.8 or above is a large effect); this is unlikely to have a clinically important effect on the participant. The fourth study (n = 12) reported differences between the intervention and control groups on problem solving (an important component of executive functioning). No means or standard deviations were presented for this outcome, therefore an effect size could not be calculated. The quality of evidence for this outcome according to GRADE was very low. This means future research is highly likely to change the estimate of effect. Primary outcome 2: Memory One small study (n = 12) reported a statistically significant difference in improvement in sentence recall between the intervention and control group following an eight-week remediation programme. No means or standard deviations were presented for this outcome, therefore an effect size could not be calculated. Secondary outcomes Two studies (n = 158) reported on anxiety/depression as measured by the Child Behavior Checklist (CBCL) and were included in a meta-analysis. We found no evidence of an effect with the intervention (mean difference -5.59, 95% CI -11.46 to 0.28; I2 = 53%). The GRADE quality of evidence for this outcome was very low, meaning future research is likely to change the estimate of effect. A single study sought to record adverse events and reported none. Two studies reported on use of the intervention (range 0 to 13 and 1 to 24 sessions). One study reported on social functioning/social competence and found no effect. The included studies reported no data for other secondary outcomes (that is quality of life and academic achievement). Authors' conclusions This review provides low-quality evidence for the use of technology-based interventions in the rehabilitation of executive functions and memory for children and adolescents with TBI. As all of the included studies contained relatively small numbers of participants (12 to 120), our findings should be interpreted with caution. The involvement of a clinician or therapist, rather than use of the technology, may have led to the success of these interventions. Future research should seek to replicate these findings with larger samples, in other regions, using ecologically valid outcome measures, and reduced clinician involvement.
Resumo:
Background: A growing body of epidemiological research suggests high rates of traumatic brain injury (TBI) in prisoners. The aim of this review is to systematically explore the literature surrounding the rates of TBI and their co-occurrences in a prison population.
Methods: Six electronic databases were systematically searched for articles published between 1980 and 2014. Studies were screened for inclusion based on predetermined criteria by two researchers who independently performed data extraction. Study quality was appraised based on a modified quality assessment tool.
Results: Twenty six studies were included in this review. Quality assessment ranged from 20% (poor) to 80% (good) with an overall average of 60%. Twenty four papers included TBI prevalence rates, which ranged from 5.69%-88%. Seventeen studies explored co-occurring factors including rates of aggression (n=7), substance abuse (n=9), anxiety and depression (n=5), neurocognitive deficits (n=4), and psychiatric conditions (n=3).
Conclusions: The high degree of variation in TBI rates may be attributed to the inconsistent way in which TBI was measured with only seven studies using valid and reliable screening tools. Additionally, gaps in the literature surrounding personality outcomes in prisoners with TBI, female prisoners with TBI, and qualitative outcomes were found.