317 resultados para Inflammation -- genetics -- immunology
Resumo:
The synovial fluid proteome in juvenile idiopathic arthritis was investigated to isolate joint-specific biomarkers that are expressed in patients displaying recurrent joint inflammation. To identify the synovial specific proteome, matched synovial fluid and plasma samples were subjected to protein separation by 2-dimension electrophoresis (2DE). Forty-three protein spots, overexpressed in the joint, were identified. Synovial fluids from children with single-event knee joint inflammation were then compared with a group with recurrent knee disease. Nine synovial specific proteins were significantly differentially expressed in the recurrent group. Proteolytic fragments of collagen X, fibrin beta-chain, and T-cell receptor alpha-region have been identified among this protein cluster. Putative biomarkers, overexpressed in the joint and differentially expressed in children with recurrent joint inflammation, have been identified. These proteins may play a significant role determining the pathological state within the chronically inflamed joint and influence disease progression in JIA. This is the first study of the synovial proteome in children.
Resumo:
Over the past number of decades there has been considerable interest in the role of neurogenic inflammation in asthma with the identification of many biologically active neuropeptides in the lung. Whilst there is convincing evidence of neurogenic inflammation in various animal models of asthma, the evidence in humans is less clear and replicating the experimental approaches in humans has proven difficult with different studies producing conflicting results. In terms of human studies, research has focused on whether pro-inflammatory neuropeptides are elevated in the asthmatic airway, and if so, what their functional effects are. There have also been studies to assess the efficacy of tachykinin receptor antagonists in improving indices of asthma control. Information to date would suggest that neuropeptides are present in human airways and are possibly upregulated in asthma, but this effect does not appear to be specific and may occur in other inflammatory airways conditions (chronic obstructive pulmonary disease (COPD) and smoking). At present there is insufficient evidence to suggest that tachykinin receptor antagonists confer any additional benefit over inhaled corticosteroid regimes for asthmatic patients. © 2007 Bentham Science Publishers Ltd.
Resumo:
Adenosine is a ubiquitous molecule present in every cell of the human body. It has a wide range of physiological functions mediated predominantly through specific cell surface adenosine receptors. Adenosine has both pro- and anti-inflammatory effects and acts on inflammatory and resident immune cells and antioxidant enzymes. The elevation of adenosine in the bronchoalveolar lavage (BAL) fluid of asthmatics combined with its bronchoconstrictor effect on the airways in asthmatics has led to increased research into the contribution of adenosine in the pathophysiology of inflammation and asthma. This review looks at the airway response to adenosine and at the interaction of adenosine with mast cells and basophils.
Resumo:
Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.
Resumo:
Epidemiological studies show that some children develop wheezing after 3 yr of age which tends to persist. It is unknown how this starts or whether there is a period of asymptomatic inflammation. The aim of this study is to determine whether lower airway allergic inflammation pre-exists in late onset childhood wheeze (LOCW). Follow-up study of children below 5 yr who had a non-bronchoscopic bronchoalveolar lavage (BAL) performed during elective surgery. The children had acted as normal controls. A modified ISAAC questionnaire was sent out at least 7 yr following the initial BAL, and this was used to ascertain whether any children had subsequently developed wheezing or other atopic disease (eczema, allergic rhinitis). Cellular and cytokine data from the original BAL were compared between those who never wheezed (NW) and those who had developed LOCW. Eighty-one normal non-asthmatic children were recruited with a median age of 3.2 . Of the 65 children contactable, 9 (16.7%) had developed wheeze, 11 (18.5%) developed eczema and 14 (22.2%) developed hay fever. In five patients, wheeze symptoms developed mean 3.3- yr (range: 2–5 yr) post-BAL. Serum IgE and blood eosinophils were not different in the LOCW and NW, although the blood white cell count was lower in the LOCW group. The median BAL eosinophil % was significantly increased in the patients with LOCW (1.55%, IQR: 0.33 to 3.92) compared to the children who never wheezed, NW (0.1, IQR: 0.0 to 0.3, p = 0.01). No differences were detected for other cell types. There are no significant differences in BAL cytokine concentrations between children with LOCW and NW children. Before late onset childhood wheezing developed, we found evidence of elevated eosinophils in the airways. These data suggest pre-existent airways inflammation in childhood asthma some years before clinical presentation.
Resumo:
Asthma is a major risk cofactor for anaphylactic deaths in children with peanut allergy. Peanut allergy is generally thought to be a lifelong condition, but some children outgrow their coexistent asthma. It has recently been shown that children who have ‘outgrown’ their asthma symptoms may have ongoing eosinophilic airways inflammation. The need for regular inhaled corticosteroid treatment in peanut allergic children and adolescents who have outgrown their asthma is however unclear. The aims of our study were to look at fractional exhaled nitric oxide levels (FeNO), as a non-invasive marker of eosinophilic airways inflammation, in peanut allergic children and assess whether children with outgrown asthma had elevated levels. Children with peanut allergy were recruited at two pediatric allergy clinics in Belfast, UK. Exhaled nitric oxide levels (FeNO) were measured using the Niox Mino in all children. Of the 101 peanut allergic children who consented for enrolment in the study, 94 were successfully able to use the NIOX Mino. Age range was 4–15 yr (median 10 yr); 61% were boys. Thirty (32%) had never wheezed, 37 (39%) had current treated asthma, 20 (21%) had at least 1 wheezing episode within the last year but were not taking any regular asthma medication (wheeze no treatment), and 7 (7%) had outgrown asthma. All children with outgrown asthma had elevated levels of FeNO (>35 ppb), and 75% of children defined as ‘wheeze no treatment’ had elevated FeNO levels (>35 ppb). Outgrown asthma and children defined as ‘wheeze no treatment’ had higher levels of FeNO than those with no history of wheeze or current treated asthma (p = 0.003). In children with peanut allergy, we found that those who had outgrown asthma had elevated FeNO levels in keeping with ongoing eosinophilic airways inflammation.
Resumo:
Acetaminophen [N-acetyl-p-aminophenol (APAP)] is the most common antipyretic/analgesic medicine worldwide. If APAP is overdosed, its metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), causes liver damage. However, epidemiological evidence has associated previous use of therapeutic APAP doses with the risk of chronic obstructive pulmonary disease (COPD) and asthma. The transient receptor potential ankyrin-1 (TRPA1) channel is expressed by peptidergic primary sensory neurons. Because NAPQI, like other TRPA1 activators, is an electrophilic molecule, we hypothesized that APAP, via NAPQI, stimulates TRPA1, thus causing airway neurogenic inflammation. NAPQI selectively excites human recombinant and native (neuroblastoma cells) TRPA1. TRPA1 activation by NAPQI releases proinflammatory neuropeptides (substance P and calcitonin gene-related peptide) from sensory nerve terminals in rodent airways, thereby causing neurogenic edema and neutrophilia. Single or repeated administration of therapeutic (15-60 mg/kg) APAP doses to mice produces detectable levels of NAPQI in the lung, and increases neutrophil numbers, myeloperoxidase activity, and cytokine and chemokine levels in the airways or skin. Inflammatory responses evoked by NAPQI and APAP are abated by TRPA1 antagonism or are absent in TRPA1-deficient mice. This novel pathway, distinguished from the tissue-damaging effect of NAPQI, may contribute to the risk of COPD and asthma associated with therapeutic APAP use.-Nassini, R., Materazzi, S., Andre, E., Sartiani, L., Aldini, G., Trevisani, M., Carnini, C., Massi, D., Pedretti, P., Carini, M., Cerbai, E., Preti, D., Villetti, G., Civelli, M., Trevisan, G., Azzari, C., Stokesberry, S., Sadofsky, L., McGarvey, L., Patacchini, R., Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 24, 4904-4916 (2010). www.fasebj.org
Resumo:
Hydrogen sulfide (H2S) is synthesized in the body from L-Cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 mu M to 40.9 +/- 0.6 mu M (n=6, P
Resumo:
We have shown previously that a para-inflammatory response exists at the retinal/choroidal interface in the aging eye; and this response plays an important role in maintaining retinal homeostasis under chronic stress conditions. We hypothesized that dysregulation of the para-inflammatory response may result in an overt pro-inflammatory response inducing retinal degeneration. In this study, we examined this hypothesis in mice deficient in chemokine CCL2 or its cognate receptor CCR2. CCL2- or CCR2-deficient mice developed retinal degenerative changes with age, characterized as retinal pigment epithelial (RPE) cell and photoreceptor cell death. Retinal cell death was associated with significantly more subretinal microglial accumulation and increased complement activation. In addition, monocytes from CCL2- or CCR2-deficient mice had reduced capacity for phagocytosis and chemotaxis, expressed less IL-10 but more iNOS, IL-12 and TNF-a when compared to monocytes from WT mice. Complement activation at the site of RPE cell death resulted in C3b/C3d but not C5b-9 deposition, indicating only partial activation of the complement pathway. Our results suggest that altered monocyte functions may convert the protective para-inflammatory response into an overtly harmful inflammation at the retina/choroidal interface in CCL2- or CCR2-deficient mice, leading to RPE and photoreceptor degeneration. These data support a concept whereby a protective para-inflammatory response relies upon a normally functioning innate immune system. If the innate immune system is deficient chronic stress may tip the balance towards an overt inflammatory response causing cell/tissue damage.