16 resultados para Identification parameters
Resumo:
This paper presents the results of a real bridge field experiment in which damage was applied artificially to a steel truss bridge. The aim of this paper is to identify the dynamic parameters of this bridge using conventional techniques and investigate the effect of various damage conditions on those parameters. In the field experiment, acceleration measurements were recorded at a number of locations on the bridge deck. To excite the bridge, a two-axle van was driven across the bridge at constant speed. Dynamic parameters, such as the bridge mode shape, natural frequency and damping constant, are identified from the acceleration signals using existing techniques such as the fast Fourier transform, logarithmic decrement and frequency domain decomposition. The variation of these parameters under the influence of artificially applied damage conditions is investigated in order to evaluate their sensitivity to the bridge damage.
Resumo:
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.
Resumo:
This paper presents the practical use of Prony Analysis to identify small signal oscillation mode parameters from simulated and actual phasor measurement unit (PMU) ringdown data. A well-known two-area four-machine power system was considered as a study case while the latest PMU ringdown data were collected from a double circuit 275 kV main interconnector on the Irish power system. The eigenvalue analysis and power spectral density were also conducted for the purpose of comparison. The capability of Prony Analysis to identify the mode parameters from three different types of simulated PMU ringdown data has been shown successfully. Furthermore, the results indicate that the Irish power system has dominant frequency modes at different frequencies. However, each mode has good system damping.
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
Resumo:
This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.
Resumo:
There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater applications such as washout resistance and compressive strength. This paper reviews statistical models developed using a factorial design that was carried out to model the influence of key parameters on properties affecting the performance of underwater cement grout. Such responses of fluidity included minislump and flow time measured by Marsh cone, washout resistance, unit weight, and compressive strength. The models are valid for mixes with 0.35–0.55 water-to-binder ratio (W/B), 0.053–0.141% of antiwashout admixture (AWA), by mass of water, and 0.4–1.8% (dry extract) of superplasticizer (SP), by mass of binder. Two types of underwater grout were tested: the first one made with cement and the second one made with 20% of pulverised fuel ash (PFA) replacement, by mass of binder. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods that are highlighted.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
The convergence of the iterative identification algorithm for a general Hammerstein system has been an open problem for a long time. In this paper, it is shown that the convergence can be achieved by incorporating a regularization procedure on the nonlinearity in addition to a normalization step on the parameters.
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
A unique property of body area networks (BANs) is the mobility of the network as the user moves freely around. This mobility represents a significant challenge for BANs, since, in order to operate efficiently, they need to be able to adapt to the changing propagation environment. A method is presented that allows BAN nodes to classify the current operating environment in terms of multipath conditions, based on received signal strength indicator values during normal packet transmissions. A controlled set of measurements was carried out to study the effect different environments inflict on on-body link signal strength in a 2.45 GHz BAN. The analysis shows that, by using two statistical parameters, gathered over a period of one second, BAN nodes can successfully classify the operating environment for over 90% of the time.
Resumo:
An experimental investigation is carried out to verify the feasibility of using an instrumented vehicle to detect and monitor bridge dynamic parameters. The low-cost method consists of the use of a moving vehicle fitted with accelerometers on its axles. In the laboratory experiment, the vehicle–bridge interaction model consists of a scaled two-axle vehicle model crossing a simply supported steel beam. The bridge model also includes a scaled road surface profile. The effects of varying the vehicle model configuration and speed are investigated. A finite element beam model is calibrated using the experimental results, and a novel algorithm for the identification of global bridge stiffness is validated. Using measured vehicle accelerations as input to the algorithm, the beam stiffness is identified with a reasonable degree of accuracy.