42 resultados para INTELLIGENT TRANSPORT SYSTEMS
Resumo:
The incidence of the aerobactin system and the genetic location of aerobactin genes were investigated in Escherichia coli K1 neonatal isolates belonging to different clonal groups. A functional aerobactin system was found in all members of the O7 MP3, O1 MP5, O1 MP9, and O18 MP9 clonal groups examined and also in K1 strains having O6, O16, and O75 lipopolysaccharide types, which are less frequently associated with neonatal infections. In contrast, the aerobactin system was not detected in strains from the O18 MP6 clone. The combined results of plasmid and colony hybridization experiments showed that the aerobactin genes were located on the chromosome in the majority (75%) of the aerobactin-producing K1 isolates, the genetic location of the aerobactin genes was closely correlated with the outer membrane protein profile rather than the O lipopolysaccharide type, the K1 strains harboring a chromosome-mediated aerobactin system did not possess colicin V genes, and five of six K1 isolates possessing a plasmid-borne aerobactin system contained colicin V genes which were located on the same plasmids carrying the aerobactin genes. The comparison of hemolysin production with possession of the aerobactin system in virulent clones of E. coli K1 strains showed that all of the aerobactin-producing strains from the O18 MP9 and O7 MP3 clonal groups did not synthesize hemolysin, whereas 11 of 12 aerobactin-nonproducing O18 MP6 isolates were hemolytic. Of the K1 strains examined, 92.5% possessed either the aerobactin system or the ability to produce hemolysin or both.
Resumo:
As the emphasis on initiatives that can improve environmental efficiency while simultaneously maintaining economic viability has escalated in recent years, attention has turned to more radical concepts of operation. In particular, the cruiser–feeder concept has shown potential for a new generation, environmentally friendly, air-transport system to alleviate the growing pressure on the passenger air-transportation network. However, a full evaluation of realizable benefits is needed to determine how the design and operation of potential feeder-aircraft configurations impact on the feasibility of the overall concept. This paper presents an analysis of a cruiser–feeder concept, in which fuel is transferred between the feeder and the cruiser in an aerial-refueling configuration to extend range while reducing cruiser weight, compared against the effects of escalating existing technology levels while retaining the existing passenger levels. Up to 14% fuel-burn and 12% operating-cost savings can be achieved when compared to a similar technology-level aircraft concept without aerial refueling, representing up to 26% in fuel burn and 25% in total operating cost over the existing operational model at today’s standard fleet technology and performance. However, these potential savings are not uniformly distributed across the network, and the system is highly sensitive to the routes serviced, with reductions in revenue-generation potential observed across the network for aerial-refueling operations due to reductions in passenger revenue.
Resumo:
Demand for intelligent surveillance in public transport systems is growing due to the increased threats of terrorist attack, vandalism and litigation. The aim of intelligent surveillance is in-time reaction to information received from various monitoring devices, especially CCTV systems. However, video analytic algorithms can only provide static assertions, whilst in reality, many related events happen in sequence and hence should be modeled sequentially. Moreover, analytic algorithms are error-prone, hence how to correct the sequential analytic results based on new evidence (external information or later sensing discovery) becomes an interesting issue. In this paper, we introduce a high-level sequential observation modeling framework which can support revision and update on new evidence. This framework adapts the situation calculus to deal with uncertainty from analytic results. The output of the framework can serve as a foundation for event composition. We demonstrate the significance and usefulness of our framework with a case study of a bus surveillance project.
Resumo:
Three issues usually are associated with threat prevention intelligent surveillance systems. First, the fusion and interpretation of large scale incomplete heterogeneous information; second, the demand of effectively predicting suspects’ intention and ranking the potential threats posed by each suspect; third, strategies of allocating limited security resources (e.g., the dispatch of security team) to prevent a suspect’s further actions towards critical assets. However, in the literature, these three issues are seldomly considered together in a sensor network based intelligent surveillance framework. To address
this problem, in this paper, we propose a multi-level decision support framework for in-time reaction in intelligent surveillance. More specifically, based on a multi-criteria event modeling framework, we design a method to predict the most plausible intention of a suspect. Following this, a decision support model is proposed to rank each suspect based on their threat severity and to determine resource allocation strategies. Finally, formal properties are discussed to justify our framework.
Resumo:
This paper introduces two new techniques for determining nonlinear canonical correlation coefficients between two variable sets. A genetic strategy is incorporated to determine these coefficients. Compared to existing methods for nonlinear canonical correlation analysis (NLCCA), the benefits here are that the nonlinear mapping requires fewer parameters to be determined, consequently a more parsimonious NLCCA model can be established which is therefore simpler to interpret. A further contribution of the paper is the investigation of a variety of nonlinear deflation procedures for determining the subsequent nonlinear canonical coefficients. The benefits of the new approaches presented are demonstrated by application to an example from the literature and to recorded data from an industrial melter process. These studies show the advantages of the new NLCCA techniques presented and suggest that a nonlinear deflation procedure should be considered. (c) 2006 Elsevier B.V. All rights reserved.