2 resultados para INDEPENDENT MECHANISMS
Resumo:
Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.
Resumo:
Despite its long record of successful use in human vaccines, the mechanisms underlying the immunomodulatory effects of alum are not fully understood. Alum is a potent inducer of interleukin-1 (IL-1) secretion in vitro in dendritic cells and macrophages via Nucleotide-binding domain and leucine-rich repeat-containing (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome activation. However, the contribution of IL-1 to alum-induced innate and adaptive immune responses is controversial and the role of IL-1α following alum injection has not been addressed. This study shows that IL-1 is dispensable for alum-induced antibody and CD8 T cell responses to ovalbumin. However, IL-1 is essential for neutrophil infiltration into the injection site, while recruitment of inflammatory monocytes and eosinophils is IL-1 independent. Both IL-1α and IL-1β are released at the site of injection and contribute to the neutrophil response. Surprisingly, these effects are NLRP3-inflammasome independent as is the infiltration of other cell populations. However, while NLRP3 and caspase 1 were dispensable, alum-induced IL-1β at the injection site was dependent on the cysteine protease cathepsin S. Overall, these data demonstrate a previously unreported role for cathepsin S in IL-1β secretion, show that inflammasome formation is dispensable for alum-induced innate immunity and reveal that IL-1α and IL-1β are both necessary for alum-induced neutrophil influx in vivo.