27 resultados para IMPURITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact scattering data for argon and its ions continue to be of interest in studies of magnetically confined plasmas. In an earlier paper, Griffin et al (1997 J. Phys. B: At. Mol. Opt. Phys. 30 3543) employed the results of 28-term and 40-term R-matrix calculations of electron-impact excitation in Ar+ to carry out a collisional-radiative modelling study of the impurity influx of argon in tokamaks. We have now completed a 452-term R-matrix with pseudo-states (RMPS) calculation of electron-impact excitation for Ar+ in order to provide more accurate excitation data; using these improved data, we have repeated the modelling studies presented in the earlier paper. We compare our excitation data, as well as the results of the collisional radiative calculations, with those arising from the 40-term R-matrix calculation and find significant differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the focus of ITER on the transport and emission properties of tungsten, generating atomic data for complex species has received much interest. Focusing on impurity influx diagnostics, we discuss recent work on heavy species. Perturbative approaches do not work well for near neutral systems so non-perturbative data are required, presenting a particular challenge for these influx diagnostics. Recent results on Mo+ are given as an illustration of how the diagnostic applications can guide the theoretical calculations for such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embrittlement by the segregation of impurity elements to grain boundaries is one of a small number of phenomena that can lead to metallurgical failure by fast fracture(1). Here we settle a question that has been debated for over a hundred years(2): how can minute traces of bismuth in copper cause this ductile metal to fail in a brittle manner? Three hypotheses for Bi embrittlement of Cu exist: two assign an electronic effect to either a strengthening(3) or weakening(4) of bonds, the third postulates a simple atomic size effect(5). Here we report first principles quantum mechanical calculations that allow us to reject the electronic hypotheses, while supporting a size effect. We show that upon segregation to the grain boundary, the large Bi atoms weaken the interatomic bonding by pushing apart the Cu atoms at the interface. The resolution of the mechanism underlying grain boundary weakening should be relevant for all cases of embrittlement by oversize impurities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The density of metastable helium atoms in a dielectric barrier discharge operating in helium with some impurities present has been measured using laser-collisional-induced fluorescence and absorption techniques. Time-resolved measurements indicate that helium metastables contribute to the production of impurity ions, in this case N-2(+), in the postdischarge current phase of a glow discharge. In our particular discharge environment, the helium metastable density is (1.5+/-1.4)x10(10) cm(-3), a result consistent with failure to observe absorption by metastables in a multipass absorption measurement. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic absorption spectroscopy of the ionic liquid 1-ethyl-3-methylimidazolium ethanoate ([emim](2)[O2CMe]), prepared according to International Patent WO 96/18459, showed it to contain large amounts of lead impurity: (ca. 0.5 M): [emim](2)[Pb(O2CMe)(4)] was isolated and shown crystallographically to contain the first known example of a monomeric, homoleptic pentacoordinate lead(ii) carboxylate complex, with a stereochemically active lone-pair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of chlorophosphoramidites have been prepared in ionic liquids and compared with material synthesised in molecular solvents. Through the use of ionic liquids as reaction media the moisture sensitivity and impurity issues hampering existing traditional synthetic routes have been eased. Not only can stock chemicals be used without purification, but the reactions may be conducted at room temperature and at high concentrations. Furthermore, reaction times are reduced and rapid addition of reagents is possible whilst retaining tight control over product selectivity. Beyond their role as reaction media, ionic liquids also present a unique storage medium for these highly moisture sensitive chlorophosphoramidites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microfluidic device designed for electrochemical studies on a microliter scale has been utilized for the examination of impurity levels in ionic liquids (ILs). Halide impurities are common following IL synthesis, and this study demonstrates the ability to quantify low concentrations of halide in a range of ILs to levels of similar to 5 ppm, even in ILs not currently measurable using other methods such as ion chromatography. To validate the mixer device, the electrochemistry of ferrocene was also examined and compared with spectroscopic and bulk electrochemistry measurements. An automated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt-compounded to form polymer nanocomposites. The rheological properties of the ALD-created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin-film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt-compounding was successful, producing well dispersed ribbon-like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work-related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD-created nanocomposite materials. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent landmark experiments have demonstrated how quantum mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems. Here we present a theoretical model to simulate such an output coupler for a Tonks- Girardeau gas that shows excellent agreement with the experimental results for atom transport and output coupling. The solid theoretical basis our model provides allows us to explore non-equilibrium transport phenomena in ultra-cold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localised in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new stir bar sorptive extraction (SBSE) technique coupled with HPLC-UV method for quantification of diclofenac in pharmaceutical formulations has been developed and validated as a proof of concept study. Commercially available polydimethylsiloxane stir bars (Twister (TM)) were used for method development and SBSE extraction (pH, phase ratio, stirring speed, temperature, ionic strength and time) and liquid desorption (solvents, desorption method, stirring time etc) procedures were optimised. The method was validated as per ICH guidelines and was successfully applied for the estimation of diclofenac from three liquid formulations viz. Voltarol (R) Optha single dose eye drops, Voltarol (R) Ophtha multidose eye drops and Voltarol (R) ampoules. The developed method was found to be linear (r=0.9999) over 100-2000 ng/ml concentration range with acceptable accuracy and precision (tested over three QC concentrations). The SBSE extraction recovery of the diclofenac was found to be 70% and the LOD and LOQ of the validated method were found to be 16.06 and 48.68 ng/ml, respectively. Furthermore, a forced degradation study of a diclofenac formulation leading to the formation of structurally similar cyclic impurity (indolinone) was carried out. The developed extraction method showed comparable results to that of the reference method, i.e. method was capable of selectively extracting the indolinone and diclofenac from the liquid matrix. Data on inter and intra stir bar accuracy and precision further confirmed robustness of the method, supporting the multiple re-use of the stir bars. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system is here studied exactly, i.e. not in terms of a Markovian master equation. The dynamics of one and two impurities is remarkably different in respect of the standard decoherence of the spin-boson system. In particular, we show: (i) the appearance of coherence oscillations, (ii) the presence of super and subdecoherent states that differ from the standard ones of the spin-boson model, and (iii) the persistence of coherence in the system at long times. We show that this behaviour is due to the fact that the pseudospins have an internal spatial structure. We argue that collective decoherence also prompts information about the correlation length of the environment. In a one-dimensional (1D) configuration, one can change even more strongly the qualitative behaviour of the dephasing just by tuning the interaction of the bath.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description of the radiation emitted by impurities from within a plasma is crucial if spectral line intensities are to be used in detailed studies, such as the analysis of impurity transport. The simplest and most direct check that can be made on measurements of line intensities is to analyse their ratios with other lines from the same ion. This avoids uncertainties in determining the volume of the emitting plasma and the absolute sensitivity calibration of the spectrometer and, in some cases, the need even for accurate measurements of parameters such as electron density. Consistency is required between the measured line intensity ratios and the theoretical values. The expected consistency has not been found for radiation emitted from the JET scrape-off layer (e.g. Lawson et al 2009a JINST 4 P04013), meaning that the description of the spectral line intensities of impurity emission from the plasma edge is incomplete. In order to gain further understanding of the discrepancies, an analysis has been carried out for emission from the JET divertor plasma and this is reported in this paper. Carbon was the main low Z intrinsic impurity in JET and an analysis of spectral line intensity ratios has been made for the C (IV) radiation emitted from the JET divertor. In this case, agreement is found between the measured and theoretical ratios to a very high accuracy, namely to within the experimental uncertainty of similar to +/- 10%. This confirms that the description of the line intensities for the present observations is complete. For some elements and ionization stages, an analysis of line intensity ratios can lead to the determination of parameters such as the electron temperature of the emitting plasma region and estimates of the contribution of recombination to the electron energy level populations. This applies to C (IV) and, to show the value and possibilities of the spectral measurements, these parameters have been calculated for a database of Ohmic and additionally heated phases of a large number of pulses. The importance of dielectronic, radiative and charge-exchange recombination as well as ionization has been investigated. In addition, the development of T-e throughout two example discharges is illustrated. The presented results indicate a number of areas for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the behavior of a two-level atom coupled to a one-dimensional, ultracold Fermi gas. The sudden switching on of the scattering between the two entities leads to the loss of any coherence in the initial state of the impurity and we show that the exact dynamics of this process is strongly influenced by the effect of the orthogonality catastrophe within the gas. We highlight the relationship between the Loschmidt echo and the retarded Green's function-typically used to formulate the dynamical theory of the catastrophe-and demonstrate that the effect is reflected in the impurity dynamics. We show that the expected nonexponential decay of the spectral function can be observed using Ramsey interferometry on the two-level atom and comment on finite temperature effects.