1 resultado para IMAGING-SYSTEM
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (136)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (84)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (14)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (8)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- Duke University (9)
- Harvard University (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (10)
- Publishing Network for Geoscientific & Environmental Data (281)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (3)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (49)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Scielo Saúde Pública - SP (23)
- Universidad Politécnica de Madrid (23)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (2)
- Universidade Federal do Pará (1)
- Universita di Parma (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (68)
- Université de Montréal, Canada (7)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (79)
- University of Washington (3)
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.