56 resultados para ICC.
Resumo:
Scientists interested in the smooth muscles of the urinary tract, and their control, have recently been studying cells in the interstitium of tissues that express the c-kit antigen (Kit(+) cells). These cells have morphologic features that are reminiscent of the well-described pacemaker cells in the gut, the interstitial cells of Cajal (ICC). The spontaneous contractile behavior of muscles in the urinary tract varies widely, and it is clear that urinary tract Kit(+) interstitial cells cannot be playing an identical role to that played by the ICC in the gut. Nevertheless, there is increasing evidence that they do play a role in modulating the contractile behavior of adjacent smooth muscle, and might also be involved in mediating neural control. This review outlines the properties of ICC in the gut, and gives an account of the discovery of cells in the interstitium of the main components of the urinary tract. The physiologic properties of such cells and the functional implications of their presence are discussed, with particular reference to the bladder. In this organ, Kit(+) cells are found under the lamina propria, where they might interact with the urothelium and with sensory nerves, and also between and within the smooth-muscle bundles. Confocal microscopy and calcium imaging are being used to assess the physiology of ICC and their interactions with smooth muscles. Differences in the numbers of ICC are seen in smooth muscle specimens obtained from patients with various pathologies; in particular, bladder overactivity is associated with increased numbers of these cells.
Resumo:
PURPOSE: In the current study we examined the location of interstitial cell of Cajal (ICC)-like cells in the guinea pig bladder wall and studied their structural interactions with nerves and smooth muscle cells. MATERIALS AND METHODS: Whole mount samples and cryosections of bladder tissue were labeled with primary and fluorescent secondary antibodies, and imaged using confocal and multiphoton microscopy. RESULTS: Kit positive ICC-like cells were located below the urothelium, in the lamina propria region and throughout the detrusor. In the suburothelium they had a stellate morphology and appeared to network. They made connections with nerves, as shown by double labeling experiments with anti-kit and anti-protein gene product 9.5. A network of vimentin positive cells was also found, of which many but not all were kit positive. In the detrusor kit positive cells were most often seen at the edge of smooth muscle bundles. They were elongated with lateral branches, running in parallel with the bundles and closely associated with intramural nerves. Another population of kit positive cells was seen in the detrusor between muscle bundles. These cells had a more stellate-like morphology and made connections with each other. Kit positive cells were seen tracking nerve bundles and close to intramural ganglia. Vimentin positive cells were present in the detrusor, of which some were also kit positive. CONCLUSIONS: There are several populations of ICC-like cells throughout the guinea pig bladder wall. They differ in morphology and orientation but all make connections with intramural nerves and in the detrusor they are closely associated with smooth muscle cells.
Resumo:
PURPOSE: Outward currents were characterized from cells resembling interstitial cells of Cajal (ICCs) isolated from the detrusor of the guinea pig bladder. MATERIALS AND METHODS: ICC-like cells were studied using the whole cell patch clamp technique and K+ filled pipettes. Outward currents were evoked by stepping positively from a holding potential of -80 mV. RESULTS: ICC-like cells were distinguished from smooth muscle cells by the presence of lateral branches and an inability to contract spontaneously or when depolarized. Depolarization elicited large outward currents. Penitrem A, a blocker of large conductance, Ca activated K+ channels, significantly decreased the outward current. Its Ca dependence was demonstrated by significant inhibition with nifedipine and Ca-free solution. When large conductance, Ca activated K+ and Ca currents were blocked with penitrem A and nifedipine, a voltage dependent current was unmasked, which activated positive to -50 mV and displayed voltage dependent inactivation with half-maximal inactivation occurring at -71 mV. It was blocked in concentration dependent fashion by tetraethylammonium but unaffected by 4-aminopyridine, charybdotoxin or apamin, suggesting that small and intermediate conductance, calcium activated potassium channels, and Kv1.2 and Kv1.3 channels are unlikely to be involved. At maximal concentrations of tetraethylammonium a portion of the voltage dependent K+ current remained that was not affected by any of the blockers tested. CONCLUSIONS: ICC-like cells from the detrusor possess calcium activated and voltage dependent K+ currents.
Resumo:
PURPOSE: We describe the presence of interstitial cells of Cajal (ICC) throughout the wall of the guinea pig bladder. MATERIALS AND METHODS: Bladders obtained from male guinea pigs were prepared for immunohistochemical investigations using various primary antibodies, including the specific ICC marker c-kit (Gibco BRL, Grand Island, New York). Enzymatically dispersed cells with a branched morphology were identified as ICC using anti-c-kit. They were loaded with fluo-4acetoxymethyl (Molecular Probes, Eugene, Oregon) and studied using confocal laser scanning microscopy. RESULTS: Anti-c-kit labeling demonstrated that ICC were oriented in parallel with the smooth muscle bundles that run diagonally throughout the bladder. Double labeling with anti-smooth muscle myosin (Sigma Chemical Co., St. Louis, Missouri) revealed that ICC were located on the boundary of smooth muscle bundles. When anti-c-kit was used in combination with the general neuronal antibody protein gene product 9.5 (Ultraclone Ltd., Isle of Wight, United Kingdom) or anti-neuronal nitric oxide synthase, it was noted that there was a close association between nerves and ICC. Enzymatic dissociation of cells from tissue pieces yielded a heterogeneous population of cells containing typical spindle-shaped smooth muscle cells and branched cells resembling ICC from other preparations. The latter could be identified immunohistochemically as ICC using anti-c-kit, whereas the majority of spindle-shaped cells were not Kit positive. Branched cells responded to the application of carbachol by firing Ca2+ waves and they were often spontaneously active. CONCLUSIONS: ICC are located on the boundary of smooth muscle bundles in the guinea pig bladder. They fire Ca2+ waves in response to cholinergic stimulation and can be spontaneously active, suggesting that they could act as pacemakers or intermediaries in the transmission of nerve signals to smooth muscle cells.
Resumo:
Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti-c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca(2+) indicator fluo 4AM. ICC fired Ca(2+) transients in response to stimulation by carbachol (1/10 microM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 microM), an M(3) receptor antagonist, but not by the M(2) receptor antagonist methoctramine (1 microM). The source of Ca(2+) underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 microM) or Ni(2+) (30-100 microM) to block Ca(2+) channels or the removal of external Ca(2+) reduced the amplitude of the carbachol transients. Application of ryanodine (30 microM) or tetracaine (100 microM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 microM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 microM) caused a significant reduction and Xestospongin C (1 microM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca(2+) indicator showed distinctively different patterns of spontaneous Ca(2+) events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca(2+) transients. PMID: 18171995 [PubMed - indexed for MEDLINE]
Resumo:
Glycated insulin was evaluated in plasma and biological tissues of diabetic animal models by immuno. cytochemistry (ICC) and a novel radioimmunoassay. Glycated insulin circulated at 0.10 +/-0.04 ng/ml and 2.20 +/-0.14 ng/ml in lean and diabetic obese (ob/ob) mice, corresponding to 12.5 and 9.8% total plasma insulin, respectively. The concentration of glycated insulin was elevated 22-fold in obese mice compared to controls (P10 and 83 +/-4 ng/g wt (P0.17 mug/g wt). ICC revealed fluorescent positively stained cells in pancreatic islets from hydrocortisone (HC)treated diabetic rats. Fasting of HC-treated rats, resulted in 3-fold and 15-fold reductions in plasma glycated insulin (P
Resumo:
The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.