2 resultados para Hypercalcaemia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied 46 members of a large kindred with familial hypocalciuric hypercalcaemia (FHH) after a neck exploration failed to cure hypercalcaemia in an asymptomatic patient. Serum calcium, serum phosphate, plasma parathormone and vitamin D metabolites do not distinguish affected members from patients with hyperparathyroidism. Because of the continuing debate as to whether or not FHH is a variant of, or distinct from, hyperparathyroidism, we have carried out a review of surgical experience with subtotal parathyroidectomy in hyperparathyroidism secondary to parathyroid hyperplasia and in FHH. Whereas the procedure is successful in 90 per cent of the former cases only one case of FHH has been cured by it. This provides evidence for the two conditions being aetiologically distinct. Before patients with asymptomatic hypercalcaemia are referred for parathyroid surgery the calcium:creatinine clearance ratio should be measured using a 2 h urine sample collected after an overnight fast and a fasting blood sample. If this ratio is less than 0.01 then screening of first degree relations should be undertaken before any parathyroid surgery is performed. Unnecessary surgery can therefore be avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adaptor protein-2 sigma subunit (AP2sigma;2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2sigma;2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca<inf>o</inf><sup>2+</sup>) homeostasis. To elucidate the role of AP2sigma;2 in Ca<inf>o</inf><sup>2+</sup> regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2sigma;2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2sigma;2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2sigma;2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2sigma;2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2sigma;2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.