55 resultados para Hydrodynamic weather forecasting.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of detecting spatially-coherent groups of data that exhibit anomalous behavior has started to attract attention due to applications across areas such as epidemic analysis and weather forecasting. Earlier efforts from the data mining community have largely focused on finding outliers, individual data objects that display deviant behavior. Such point-based methods are not easy to extend to find groups of data that exhibit anomalous behavior. Scan Statistics are methods from the statistics community that have considered the problem of identifying regions where data objects exhibit a behavior that is atypical of the general dataset. The spatial scan statistic and methods that build upon it mostly adopt the framework of defining a character for regions (e.g., circular or elliptical) of objects and repeatedly sampling regions of such character followed by applying a statistical test for anomaly detection. In the past decade, there have been efforts from the statistics community to enhance efficiency of scan statstics as well as to enable discovery of arbitrarily shaped anomalous regions. On the other hand, the data mining community has started to look at determining anomalous regions that have behavior divergent from their neighborhood.In this chapter,we survey the space of techniques for detecting anomalous regions on spatial data from across the data mining and statistics communities while outlining connections to well-studied problems in clustering and image segmentation. We analyze the techniques systematically by categorizing them appropriately to provide a structured birds eye view of the work on anomalous region detection;we hope that this would encourage better cross-pollination of ideas across communities to help advance the frontier in anomaly detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Value-at-risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram-Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time-varying higher-moments models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.