2 resultados para Hormonal therapy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background

It is estimated that up to 75% of cancer survivors may experience cognitive impairment as a result of cancer treatment and given the increasing size of the cancer survivor population, the number of affected people is set to rise considerably in coming years. There is a need, therefore, to identify effective, non-pharmacological interventions for maintaining cognitive function or ameliorating cognitive impairment among people with a previous cancer diagnosis.
Objectives

To evaluate the cognitive effects, non-cognitive effects, duration and safety of non-pharmacological interventions among cancer patients targeted at maintaining cognitive function or ameliorating cognitive impairment as a result of cancer or receipt of systemic cancer treatment (i.e. chemotherapy or hormonal therapies in isolation or combination with other treatments).
Search methods

We searched the Cochrane Centre Register of Controlled Trials (CENTRAL), MEDLINE, Embase, PUBMED, Cumulative Index of Nursing and Allied Health Literature (CINAHL) and PsycINFO databases. We also searched registries of ongoing trials and grey literature including theses, dissertations and conference proceedings. Searches were conducted for articles published from 1980 to 29 September 2015.
Selection criteria

Randomised controlled trials (RCTs) of non-pharmacological interventions to improve cognitive impairment or to maintain cognitive functioning among survivors of adult-onset cancers who have completed systemic cancer therapy (in isolation or combination with other treatments) were eligible. Studies among individuals continuing to receive hormonal therapy were included. We excluded interventions targeted at cancer survivors with central nervous system (CNS) tumours or metastases, non-melanoma skin cancer or those who had received cranial radiation or, were from nursing or care home settings. Language restrictions were not applied.
Data collection and analysis

Author pairs independently screened, selected, extracted data and rated the risk of bias of studies. We were unable to conduct planned meta-analyses due to heterogeneity in the type of interventions and outcomes, with the exception of compensatory strategy training interventions for which we pooled data for mental and physical well-being outcomes. We report a narrative synthesis of intervention effectiveness for other outcomes.
Main results

Five RCTs describing six interventions (comprising a total of 235 participants) met the eligibility criteria for the review. Two trials of computer-assisted cognitive training interventions (n = 100), two of compensatory strategy training interventions (n = 95), one of meditation (n = 47) and one of physical activity intervention (n = 19) were identified. Each study focused on breast cancer survivors. All five studies were rated as having a high risk of bias. Data for our primary outcome of interest, cognitive function were not amenable to being pooled statistically. Cognitive training demonstrated beneficial effects on objectively assessed cognitive function (including processing speed, executive functions, cognitive flexibility, language, delayed- and immediate- memory), subjectively reported cognitive function and mental well-being. Compensatory strategy training demonstrated improvements on objectively assessed delayed-, immediate- and verbal-memory, self-reported cognitive function and spiritual quality of life (QoL). The meta-analyses of two RCTs (95 participants) did not show a beneficial effect from compensatory strategy training on physical well-being immediately (standardised mean difference (SMD) 0.12, 95% confidence interval (CI) -0.59 to 0.83; I2= 67%) or two months post-intervention (SMD - 0.21, 95% CI -0.89 to 0.47; I2 = 63%) or on mental well-being two months post-intervention (SMD -0.38, 95% CI -1.10 to 0.34; I2 = 67%). Lower mental well-being immediately post-intervention appeared to be observed in patients who received compensatory strategy training compared to wait-list controls (SMD -0.57, 95% CI -0.98 to -0.16; I2 = 0%). We assessed the assembled studies using GRADE for physical and mental health outcomes and this evidence was rated to be low quality and, therefore findings should be interpreted with caution. Evidence for physical activity and meditation interventions on cognitive outcomes is unclear.
Authors' conclusions

Overall, the, albeit low-quality evidence may be interpreted to suggest that non-pharmacological interventions may have the potential to reduce the risk of, or ameliorate, cognitive impairment following systemic cancer treatment. Larger, multi-site studies including an appropriate, active attentional control group, as well as consideration of functional outcomes (e.g. activities of daily living) are required in order to come to firmer conclusions about the benefits or otherwise of this intervention approach. There is also a need to conduct research into cognitive impairment among cancer patient groups other than women with breast cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of its single technology appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited the company that manufactures cabazitaxel (Jevtana(®), Sanofi, UK) to submit evidence for the clinical and cost effectiveness of cabazitaxel for treatment of patients with metastatic hormone-relapsed prostate cancer (mHRPC) previously treated with a docetaxel-containing regimen. The School of Health and Related Research Technology Appraisal Group at the University of Sheffield was commissioned to act as the independent Evidence Review Group (ERG). The ERG produced a critical review of the evidence for the clinical and cost effectiveness of the technology based upon the company's submission to NICE. Clinical evidence for cabazitaxel was derived from a multinational randomised open-label phase III trial (TROPIC) of cabazitaxel plus prednisone or prednisolone compared with mitoxantrone plus prednisone or prednisolone, which was assumed to represent best supportive care. The NICE final scope identified a further three comparators: abiraterone in combination with prednisone or prednisolone; enzalutamide; and radium-223 dichloride for the subgroup of people with bone metastasis only (no visceral metastasis). The company did not consider radium-223 dichloride to be a relevant comparator. Neither abiraterone nor enzalutamide has been directly compared in a trial with cabazitaxel. Instead, clinical evidence was synthesised within a network meta-analysis (NMA). Results from TROPIC showed that cabazitaxel was associated with a statistically significant improvement in both overall survival and progression-free survival compared with mitoxantrone. Results from a random-effects NMA, as conducted by the company and updated by the ERG, indicated that there was no statistically significant difference between the three active treatments for both overall survival and progression-free survival. Utility data were not collected as part of the TROPIC trial, and were instead taken from the company's UK early access programme. Evidence on resource use came from the TROPIC trial, supplemented by both expert clinical opinion and a UK clinical audit. List prices were used for mitoxantrone, abiraterone and enzalutamide as directed by NICE, although commercial in-confidence patient-access schemes (PASs) are in place for abiraterone and enzalutamide. The confidential PAS was used for cabazitaxel. Sequential use of the advanced hormonal therapies (abiraterone and enzalutamide) does not usually occur in clinical practice in the UK. Hence, cabazitaxel could be used within two pathways of care: either when an advanced hormonal therapy was used pre-docetaxel, or when one was used post-docetaxel. The company believed that the former pathway was more likely to represent standard National Health Service (NHS) practice, and so their main comparison was between cabazitaxel and mitoxantrone, with effectiveness data from the TROPIC trial. Results of the company's updated cost-effectiveness analysis estimated a probabilistic incremental cost-effectiveness ratio (ICER) of £45,982 per quality-adjusted life-year (QALY) gained, which the committee considered to be the most plausible value for this comparison. Cabazitaxel was estimated to be both cheaper and more effective than abiraterone. Cabazitaxel was estimated to be cheaper but less effective than enzalutamide, resulting in an ICER of £212,038 per QALY gained for enzalutamide compared with cabazitaxel. The ERG noted that radium-223 is a valid comparator (for the indicated sub-group), and that it may be used in either of the two care pathways. Hence, its exclusion leads to uncertainty in the cost-effectiveness results. In addition, the company assumed that there would be no drug wastage when cabazitaxel was used, with cost-effectiveness results being sensitive to this assumption: modelling drug wastage increased the ICER comparing cabazitaxel with mitoxantrone to over £55,000 per QALY gained. The ERG updated the company's NMA and used a random effects model to perform a fully incremental analysis between cabazitaxel, abiraterone, enzalutamide and best supportive care using PASs for abiraterone and enzalutamide. Results showed that both cabazitaxel and abiraterone were extendedly dominated by the combination of best supportive care and enzalutamide. Preliminary guidance from the committee, which included wastage of cabazitaxel, did not recommend its use. In response, the company provided both a further discount to the confidential PAS for cabazitaxel and confirmation from NHS England that it is appropriate to supply and purchase cabazitaxel in pre-prepared intravenous-infusion bags, which would remove the cost of drug wastage. As a result, the committee recommended use of cabazitaxel as a treatment option in people with an Eastern Cooperative Oncology Group performance status of 0 or 1 whose disease had progressed during or after treatment with at least 225 mg/m(2) of docetaxel, as long as it was provided at the discount agreed in the PAS and purchased in either pre-prepared intravenous-infusion bags or in vials at a reduced price to reflect the average per-patient drug wastage.