346 resultados para Homocysteine Levels
Resumo:
BACKGROUND AND PURPOSE: Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype. METHODS: Under a case-control design we compared fasting levels of homocysteine and MTHFR genotypes in groups of subjects consisting of stroke, vascular dementia (VaD), and Alzheimer disease patients and normal controls from Northern Ireland. RESULTS: A significant increase in plasma homocysteine was observed in all 3 disease groups compared with controls. This remained significant after allowance for confounding factors (age, sex, hypertension, cholesterol, smoking, creatinine, and nutritional measures). MTHFR genotype was not found to influence homocysteine levels, although the T allele was found to increase risk for VaD and perhaps dementia after stroke. CONCLUSIONS: We report that moderately high plasma levels of homocysteine are associated with stroke, VaD, and Alzheimer disease. This is not due to vascular risk factors, nutritional status, or MTHFR genotype
Resumo:
Background: In many countries current recommendations are that women take a daily 400ug folic acid supplement, from before conception until the end of the 12th week of gestation, for the prevention of neural tube defects. Low folate status is associated with an elevated concentration of plasma total homocysteine (tHcy), a risk factor that is associated with pregnancy complications such as pre-eclampsia. Methods: In a longitudinal study, tHcy and corresponding folate status were determined in 101 pregnant women at 12, 20 and 35 weeks of gestation, in 35 non-pregnant control subjects sampled conconcurrently, and in a subgroup (n=21 pregnant, 19 non-pregnant women) at 3 days post-partum. Results: Plasma tHcy concentrations were significantly lower throughout pregnancy compared with control subjects, with values lowest in the 2nd trimester before increasing toward non-pregnant values in the 3rd trimester. Importantly, tHcy concentrations were lower in pregnant women taking folic acid supplements compared to those not, an effect which reached significance in the 3rd trimester (5.25 umol/l v 6.89 umol/l, P <0.05). Furthermore, during the 3rd trimester, tHcy concentrations were significantly higher in pregnant women with a history of miscarriage compared to those with no previous history (7.32 umol/l v 5.62 uÂmol/l, P <0.01). Conclusion: This is the first longitudinal study to show that homocysteine levels rise in late pregnancy towards non-pregnant levels; a rise which can be limited by enhancing folate status through continued folic acid supplementation. These results indicate a potential role for continued folic acid supplementation in reducing pregnancy complications associated with hyperhomocysteinaemia.
Resumo:
Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.
Resumo:
Elevation in plasma homocysteine concentration has been associated with vascular disease and neural tube defects. Methionine synthase is a vitamin B(12)-dependent enzyme that catalyses the remethylation of homocysteine to methionine. Therefore, defects in this enzyme may result in elevated homocysteine levels. One relatively common polymorphism in the methionine synthase gene (D919G) is an A to G transition at bp 2,756, which converts an aspartic acid residue believed to be part of a helix involved in co-factor binding to a glycine. We have investigated the effect of this polymorphism on plasma homocysteine levels in a working male population (n = 607) in which we previously described the relationship of the C677T "thermolabile" methylenetetrahydrofolate reductase (MTHFR) polymorphism with homocysteine levels. We found that the methionine synthase D919G polymorphism is significantly (P = 0.03) associated with homocysteine concentration, and the DD genotype contributes to a moderate increase in homocysteine levels across the homocysteine distribution (OR = 1.58, DD genotype in the upper half of the homocysteine distribution, P = 0.006). Unlike thermolabile MTHFR, the homocysteine-elevating effects of the methionine synthase polymorphism are independent of folate and B(12) levels; however, the DD genotype has a larger homocysteine-elevating effect in individuals with low B(6) levels. This polymorphism may, therefore, make a moderate, but significant, contribution to clinical conditions that are associated with elevated homocysteine.
Resumo:
Background: Elevated homocysteine is associated with ischaemic heart disease (IHD). The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene results in reduced MTHFR enzyme activity and reduced methylation of homocysteine to methionine resulting in mild hyperhomocysteinaemia. Case-control association studies of the role of the C677T MTHFR polymorphism in IHD have produced conflicting results. We therefore used newly described family-based association tests to investigate the role of this polymorphism in IHD, in a well-defined population. Methods: A total of 352 individuals from 129 families (discordant sibships and parent-child trios) were recruited. Linkage disequilibrium between the polymorphism and IHD was tested for using the combined transmission disequilibrium test (TDT)/sib-TDT and pedigree disequilibrium test (PDT). Homocysteine levels were measured. Results: Both the TDT/sib-TDT and PDT analyses found a significantly reduced transmission of the T allele to affected individuals (P=0.016 and P=0.021). There was no significant difference in homocysteine levels between affected and unaffected siblings. TT homozygotes had mean homocysteine levels significantly higher than those of TC heterozygotes (P
Resumo:
Mild hyperhomocysteinaemia is a major risk factor for vascular disease and neural tube defects (NTDs), conferring an approximately three-fold relative risk for each condition. It has several possible causes: heterozygosity for rare loss of function mutations in the genes for 5,10-methylene tetrahydrofolate reductase (MTHFR) or cystathionine-beta-synthase (CBS); dietary insufficiency of vitamin co-factors B6, B12 or folates; or homozygosity for a common 'thermolabile' mutation in the MTHFR gene which has also been associated with vascular disease and NTDs. We quantified the contribution of the thermolabile mutation to the hyperhomocysteinaemic phenotype in a working male population (625 individuals). Serum folate and vitamin B12 concentrations were also measured and their relationship with homocysteine status and MTHFR genotype assessed. The homozygous thermolabile genotype occurred in 48.4, 35.5, and 23.4% of the top 5, 10, and 20% of individuals (respectively) ranked by plasma homocysteine levels, compared with a frequency of 11.5% in the study population as a whole, establishing that the mutation is a major determinant of homocysteine levels at the upper end of the range. Serum folate concentrations also varied with genotype, being lowest in thermolabile homozygotes. The MTHFR thermolabile genotype should be considered when population studies are designed to determine the effective homocysteine-lowering dose of dietary folate supplements, and when prophylactic doses of folate are recommended for individuals.
Resumo:
Abstract Objective To determine if high umbilical artery Doppler (UAD) pulsatility index (PI) is associated with cardio-vascular (CV) risk-factors in children at age 12 years. Methods We studied 195 children at age 12 years who had had in-utero UAD studies performed at 28 weeks gestation. The children were grouped according to whether their umbilical Doppler PI was high (indicating poor feto-placental circulation) or normal. At age 12 years we assessed CV risk factors, including anthropometric measures, blood pressure, pulse wave velocity (a measure of arterial compliance), cardio-respiratory fitness and homocysteine and cholesterol serum levels. Results Compared with children with a normal UAD PI (N=88), the children (N=107) with high UAD PI had higher resting pulse rate (p=0.04), higher pulse wave velocity (p=0.046), higher serum homocysteine levels (p=0.032) and reduced arterial compliance (7.58 v 8.50 m/sec, p=0.029) using univariate analysis. These differences were not present when adjusting for cofounders was modelled. Conclusion High PI on UAD testing in-utero may be associated with increased likelihood of some cardio-vascular risk factors at age 12-years but confounding variables may be as important. Our study raises possible long-term benefits of in-utero UAD measurements.
Resumo:
Increased plasma homocysteine is an independent risk factor for cardiovascular disease. We have investigated homocysteine and B-group vitamin levels in renal transplant patients. Fasting blood was collected from 55 renal transplant recipients with good renal function and 32 age/sex matched control subjects. Total homocysteine was increased in transplant recipients in comparison to controls (10.9+/-1.5 vs. 6.7+/-1.3 micromol/l, P < 0.001). There was no difference in homocysteine between patients receiving cyclosporin (n = 39, homocysteine 11.0+/-1.5 micromol/l) and patients receiving prednisolone + azathioprine (n = 16, 10.8+/-1.6 micromol/l, mean+/-S.D.), although there was a significant correlation between homocysteine and serum cyclosporin concentration in the sub-group of patients receiving that immunosuppressive regimen (r = 0.42, P < 0.05). Levels of B-group vitamins were similar in patients and controls. Plasma homocysteine is increased in renal transplant recipients even in the presence of minor degrees of renal impairment and normal levels of B-group vitamins.
Resumo:
Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype.
Plasma total homocysteine and carotid intima-media thickness in type 1 diabetes: A prospective study
Resumo:
Objective: Plasma total homocysteine (tHcy) has been positively associated with carotid intima-media thickness (IMT) in non-diabetic populations and in a few cross-sectional studies of diabetic patients. We investigated cross-sectional and prospective associations of a single measure of tHcy with common and internal carotid IMT over a 6-year period in type 1 diabetes. Research design and methods: tHcy levels were measured once, in plasma obtained in 1997–1999 from patients (n = 599) in the Epidemiology of Diabetes Interventions and Complications (EDIC) study, the observational follow-up of the Diabetes Control and Complications Trial (DCCT). Common and internal carotid IMT were determined twice, in EDIC “Year 6” (1998–2000) and “Year 12” (2004–2006), using B-mode ultra-sonography. Results: After adjustment, plasma tHcy [median (interquartile range): 6.2 (5.1, 7.5) μmol/L] was significantly correlated with age, diastolic blood pressure, renal dysfunction, and smoking (all p < 0.05). In an unadjusted model only, increasing quartiles of tHcy correlated with common and internal carotid IMT, again at both EDIC time-points (p < 0.01). However, multivariate logistic regression revealed no significant associations between increasing quartiles of tHcy and the 6-year change in common and internal carotid IMT (highest vs. lowest quintile) when adjusted for conventional risk factors. Conclusions: In a type 1 diabetes cohort from the EDIC study, plasma tHcy measured in samples drawn in 1997–1999 was associated with measures of common and internal carotid IMT measured both one and seven years later, but not with IMT progression between the two time-points. The data do not support routine measurement of tHcy in people with Type 1 diabetes.
Resumo:
Peat bogs represent unique ecosystems that are under particular threat from fragmentation due to peat harvesting, with only 38% of the original peatland in Europe remaining intact and unaffected by peat cutting, drainage and silviculture. In this study, we have used microsatellite markers to determine levels and patterns of genetic diversity in both cut and uncut natural populations of the peat moss Polytrichum commune. Overall diversity levels suggest that there is more genetic variation present than had previously been assumed for bryophytes. Despite this, diversity values from completely cut bogs were found to be lower than those from uncut peatlands (average 0.729 versus 0.880). In addition, the genetic diversity was more highly structured in the cut populations, further suggesting that genetic drift is already affecting genetic diversity in peat bogs subjected to fragmentation.
Resumo:
The potential for physical removal of Mycobacterium avium ssp. paratuberculosis (M. paratuberculosis) from milk by centrifugation and microfiltration was investigated by simulating commercial processing conditions in the laboratory by means of a microcentrifuge and syringe filters, respectively. Results indicated that both centrifugation of preheated milk (60 degrees C) at 7000 x g for 10 s, and microfiltration through a filter of pore size 1.2 mu m, were capable of removing up to 95-99.9% of M. paratuberculosis cells from spiked whole milk and Middlebrook 7H9 broth suspensions, respectively. Centrifugation and microfiltration may therefore have potential application within the dairy industry as pretreatments to reduce M. paratuberculosis contamination of raw milk.