6 resultados para Hierarchical task analysis
Resumo:
Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.
Resumo:
SYSTEMATIC REVIEW AND META-ANALYSIS: EFFECTS OF WALKING EXERCISE IN CHRONIC MUSCULOSKELETAL PAIN O'Connor S.R.1, Tully M.A.2, Ryan B.3, Baxter D.G.3, Bradley J.M.1, McDonough S.M.11University of Ulster, Health & Rehabilitation Sciences Research Institute, Newtownabbey, United Kingdom, 2Queen's University, UKCRC Centre of Excellence for Public Health (NI), Belfast, United Kingdom, 3University of Otago, Centre for Physiotherapy Research, Dunedin, New ZealandPurpose: To examine the effects of walking exercise on pain and self-reported function in adults with chronic musculoskeletal pain.Relevance: Chronic musculoskeletal pain is a major cause of morbidity, exerting a substantial influence on long-term health status and overall quality of life. Current treatment recommendations advocate various aerobic exercise interventions for such conditions. Walking may represent an ideal form of exercise due to its relatively low impact. However, there is currently limited evidence for its effectiveness.Participants: Not applicable.Methods: A comprehensive search strategy was undertaken by two independent reviewers according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the recommendations of the Cochrane Musculoskeletal Review Group. Six electronic databases (Medline, CINAHL, PsychINFO, PEDro, Sport DISCUS and the Cochrane Central Register of Controlled Trials) were searched for relevant papers published up to January 2010 using MeSH terms. All randomised or non-randomised studies published in full were considered for inclusion. Studies were required to include adults aged 18 years or over with a diagnosis of chronic low back pain, osteoarthritis or fibromyalgia. Studies were excluded if they involved peri-operative or post-operative interventions or did not include a comparative, non exercise or non-walking exercise control group. The U.S. Preventative Services Task Force system was used to assess methodological quality. Data for pain and self-reported function were extracted and converted to a score out of 100.Analysis: Data were pooled and analyzed using RevMan (v.5.0.24). Statistical heterogeneity was assessed using the X2 and I2 test statistics. A random effects model was used to calculate the mean differences and 95% CIs. Data were analyzed by length of final follow-up which was categorized as short (≤8 weeks post randomisation), mid (2-12 months) or long-term (>12 months).Results: A total of 4324 articles were identified and twenty studies (1852 participants) meeting the inclusion criteria were included in the review. Overall, studies were judged to be of at least fair methodological quality. The most common sources of likely bias were identified as lack of concealed allocation and failure to adequately address incomplete data. Data from 12 studies were suitable for meta-analysis. Walking led to reductions in pain at short (<8 weeks post randomisation) (-8.44 [-14.54, -2.33]) and mid-term (>8 weeks - 12 month) follow-up (-9.28 [-16.34, -2.22]). No effect was observed for long-term (>12 month) data (-2.49 [-7.62, 2.65]). For function, between group differences were observed for short (-11.57 [-16.06, -7.08]) and mid-term data (-13.26 [-16.91, -9.62]). A smaller effect was also observed at long-term follow-up (-5.60 [-7.70, -3.50]).Conclusions: Walking interventions were associated with statistically significant improvements in pain and function at short and mid-term follow-up. Long-term data were limited but indicated that these effects do not appear to be maintained beyond twelve months.Implications: Walking may be an effective form of exercise for individuals with chronic musculoskeletal pain. However, further research is required which examines longer term follow-up and dose-response issues in this population.Key-words: 1. Walking exercise 2. Musculoskeletal pain 3. Systematic reviewFunding acknowledgements: Department of Employment and Learning, Northern Ireland.Ethics approval: Not applicable.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.
Resumo:
To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.