5 resultados para Hierarchical Linear Modelling
Resumo:
Biotic interactions can have large effects on species distributions yet their role in shaping species ranges is seldom explored due to historical difficulties in incorporating biotic factors into models without a priori knowledge on interspecific interactions. Improved SDMs, which account for biotic factors and do not require a priori knowledge on species interactions, are needed to fully understand species distributions. Here, we model the influence of abiotic and biotic factors on species distribution patterns and explore the robustness of distributions under future climate change. We fit hierarchical spatial models using Integrated Nested Laplace Approximation (INLA) for lagomorph species throughout Europe and test the predictive ability of models containing only abiotic factors against models containing abiotic and biotic factors. We account for residual spatial autocorrelation using a conditional autoregressive (CAR) model. Model outputs are used to estimate areas in which abiotic and biotic factors determine species’ ranges. INLA models containing both abiotic and biotic factors had substantially better predictive ability than models containing abiotic factors only, for all but one of the four species. In models containing abiotic and biotic factors, both appeared equally important as determinants of lagomorph ranges, but the influences were spatially heterogeneous. Parts of widespread lagomorph ranges highly influenced by biotic factors will be less robust to future changes in climate, whereas parts of more localised species ranges highly influenced by the environment may be less robust to future climate. SDMs that do not explicitly include biotic factors are potentially misleading and omit a very important source of variation. For the field of species distribution modelling to advance, biotic factors must be taken into account in order to improve the reliability of predicting species distribution patterns both presently and under future climate change.
Resumo:
The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.
Resumo:
Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.
Resumo:
Robust joint modelling is an emerging field of research. Through the advancements in electronic patient healthcare records, the popularly of joint modelling approaches has grown rapidly in recent years providing simultaneous analysis of longitudinal and survival data. This research advances previous work through the development of a novel robust joint modelling methodology for one of the most common types of standard joint models, that which links a linear mixed model with a Cox proportional hazards model. Through t-distributional assumptions, longitudinal outliers are accommodated with their detrimental impact being down weighed and thus providing more efficient and reliable estimates. The robust joint modelling technique and its major benefits are showcased through the analysis of Northern Irish end stage renal disease patients. With an ageing population and growing prevalence of chronic kidney disease within the United Kingdom, there is a pressing demand to investigate the detrimental relationship between the changing haemoglobin levels of haemodialysis patients and their survival. As outliers within the NI renal data were found to have significantly worse survival, identification of outlying individuals through robust joint modelling may aid nephrologists to improve patient's survival. A simulation study was also undertaken to explore the difference between robust and standard joint models in the presence of increasing proportions and extremity of longitudinal outliers. More efficient and reliable estimates were obtained by robust joint models with increasing contrast between the robust and standard joint models when a greater proportion of more extreme outliers are present. Through illustration of the gains in efficiency and reliability of parameters when outliers exist, the potential of robust joint modelling is evident. The research presented in this thesis highlights the benefits and stresses the need to utilise a more robust approach to joint modelling in the presence of longitudinal outliers.
Resumo:
Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.