9 resultados para Heurística surrogate
Resumo:
BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.
METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.
RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.
CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.
Resumo:
This book contains the Exif, XMP, and IPTC metadata extract ed from the 100 digital surrogates featured in Display At Your Own Risk, an online exhibition experiment. In some cases, the metadata is extensive, almost overwhelming; in others, little to no metadata was embedded in the digital surrogate's file at all. Preparing this book to accompany the Display At Your Own Risk exhibition made us realise that metadata can be beautiful. We hope you find beauty here too.
Resumo:
Amphibian defensive skin secretions and reptile venoms are rich sources of bioactive peptides with potential pharmacological/pharmaceutical applications. As amphibian and reptile populations are in rapid global decline, our research
group has been developing analytical methods that permit generation of robust molecular data from non-invasive skin secretion samples and venom samples. While previously we have demonstrated that parallel proteome and venom gland
transcriptome analyses can be performed on such samples, here we report the presence of DNA that facilitates the more widely-used applications of gene sequencing, such as molecular phylogenetics, in a non-invasive manner that circumvents specimen sacrifice. From this “surrogate” tissue, we acquired partial 12S and 16S rRNA gene sequences that are presented for illustration purposes. Thus from a single sample of amphibian skin secretion and reptile venom, robust and complementary proteome, transcriptome and genome data can be generated for applications in diverse scientific disciplines.
Resumo:
Background: Lung clearance index (LCI) has good clinimetric properties and an acceptable feasibility profile as a surrogate endpoint in Cystic Fibrosis (CF). Although most studies to date have been in children, increasing numbers of adults with CF also have normal spirometry. Further study of LCI as an endpoint in CF adults is required. Therefore, the purpose of this study was to determine the clinimetric properties of LCI over the complete age range of people with CF. Methods: Clinically stable adults and children with CF and age matched healthy controls were recruited. Results: LCI and spirometry data for 110 CF subjects and 61 controls were collected at a stable visit. CF Questionnaire-Revised (CFQ-R) was completed by 80/110 CF subjects. Fifty-six CF subjects completed a second stable visit. The LCI CV% was 4.1% in adults and 6.3% in children with CF. The coefficient of repeatability of LCI was 1.2 in adults and 1.3 in children. In both adults and children, LCI (AUCROC=0.93 and 0.84) had greater combined sensitivity and specificity to discriminate between people with CF and controls compared to FEV1 (AUCROC=0.88 and 0.60) and FEF25-75 (AUCROC=0.87 and 0.68). LCI correlated significantly with the CFQ-R treatment burden in adults (r=-0.37; p<0.01) and children (r=-0.50; p<0.01). Washout tests were successful in 90% of CF subjects and were perceived as comfortable and easy to perform in both adults and children. Conclusions: These data support the use of LCI as a surrogate outcome measure in CF clinical trials in adults as well as children.
Resumo:
A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.
Resumo:
The annotation of Business Dynamics models with parameters and equations, to simulate the system under study and further evaluate its simulation output, typically involves a lot of manual work. In this paper we present an approach for automated equation formulation of a given Causal Loop Diagram (CLD) and a set of associated time series with the help of neural network evolution (NEvo). NEvo enables the automated retrieval of surrogate equations for each quantity in the given CLD, hence it produces a fully annotated CLD that can be used for later simulations to predict future KPI development. In the end of the paper, we provide a detailed evaluation of NEvo on a business use-case to demonstrate its single step prediction capabilities.
Resumo:
Image guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogenous whole pelvic radiotherapy dose but these are not reliable when using reduced margins, dose escalation or hypo-fractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990's. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aims to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied which resulted in 50 papers being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardisation of all techniques and procedures in relation to the use of prostate FMs is required. Finally a clinical trial investigating a non-surgical alternative to prostate FMS is introduced.
Resumo:
A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected interpolation points defined by discrete empirical interpolation method (DEIM). The flow field is then reconstructed by a least square approximation of flow modes extracted by proper orthogonal decomposition (POD). The proposed model is applied in the prediction of limit cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results are validate against a time accurate CFD-FEM code. The results show the model is able to replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a fraction of CFD cost.