3 resultados para Heathlands.
Resumo:
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass-abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.
Resumo:
Questions - Are the germinable seed banks of upland heath and blanket bog reduced following wildfires? Are some species at particular risk? Do the impacts of wildfires on seed banks differ between heathlands and blanket bog?
Location - Northern Ireland, United Kingdom.
Methods - Vegetation surveys and seed bank sampling were conducted in 2012 at burned and unburned areas within six upland sites where large wildfires had occurred during spring 2011. Differences in seedling abundance, species richness and Jaccard similarity indices between burned and unburned areas were compared using GLMMs. Differences in the community composition were examined using pRDA.
Results - In total, 24 of the 51 species in the vegetation were detected in the germinable seed bank. Species richness and the abundance of seedlings other than Calluna vulgaris were lower in areas where wildfires had occurred. Species composition of both germinable seed banks and vegetation differed between burned and unburned areas within sites; with negative associations between burned areas and some key indicator species including Drosera rotundifolia, Eriophorum vaginatum, Empetrum nigrum, Narthecium ossifragum and Trichophorum germanicum. We did not find any evidence of significant interactions between burning and habitat, suggesting that wildfires had similar impacts on each species regardless of the habitat in which they occurred.
Conclusions - This study differs from other UK studies in that it examines impacts of wildfires at sites that have not been previously intensively managed by burning. In particular, we highlight potential impacts on N. ossifragum and D. rotundifolia, which are key components of the upland flora and, to our knowledge, were not present in previous UK studies.
Resumo:
The effects of repeated survey and fieldwork timing on data derived from a recently proposed standard field methodology for empirical estimation of Relative Pollen Productivity have been tested. Seasonal variations in vegetation and associated pollen assemblages were studied in three contrasting cultural habitat types; semi-natural ancient woodlands, lowland heaths, and unimproved, traditionally managed hay meadows. Results show that in woodlands and heathlands the standard method generates vegetation data with a reasonable degree of similarity throughout the field season, though in some instances additional recording of woodland canopy cover should be undertaken, and differences were greater for woodland understorey taxa than for arboreal taxa. Large differences in vegetation cover were observed over the field season in the grassland community, and matching the phenological timing of surveys within and between studies is clearly important if RPP estimates from these sites are to be comparable. Pollen assemblages from closely co-located moss polsters collected on different visits are shown to be variable in all communities, to a greater degree than can be explained by the sampling error associated with pollen counting, and further study of moss polsters as pollen traps is recommended.