4 resultados para Heat waves (Meteorology)
Resumo:
Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as
Resumo:
Objective: We explored whether readers can understand key messages without having to read the full review, and if there were differences in understanding between various types of summary.
Design: A randomised experiment of review summaries which compared understanding of a key outcome.
Participants: Members of university staff (n = 36).
Setting: Universities on the island of Ireland.
Method: The Cochrane Review chosen examines the health impacts of the use of electric fans during heat waves. Participants were asked their expectation of the effect these would have on mortality. They were then randomly assigned a summary of the review (i.e. abstract, plain language summary, podcast or podcast transcription) and asked to spend a short time reading/listening to the summary. After this they were again asked about the effects of electric fans on mortality and to indicate if they would want to read the full Review.
Main outcome measure: Correct identification of a key review outcome.
Results: Just over half (53%) of the participants identified its key message on mortality after engaging with their summary. The figures were 33% for the abstract group, 50% for both the plain language and transcript groups and 78% for the podcast group.
Conclusions: The differences between the groups were not statistically significant but suggest that the audio summary might improve knowledge transfer compared to written summaries. These findings should be explored further using a larger sample size and with other reviews.
Resumo:
The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Resumo:
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.