4 resultados para Hardoy, Jorge E.: Environmental problems in an urbanizing world
Resumo:
The paper investigates the dynamics and volution of issues on the agenda of Baltic environmental non-governmental organisations (NGOs) since the collapse of communism. The past research on Baltic environment activism suggests that these enjoy high visibility because they tapped the core societal views of natural environment as a crucial asset of a nation. As we demonstrate in this paper, the changes in agendas of Baltic environmental non-governmental organisations (ENGOs) make clear that the rhetorical toolbox of ‘national environment’ is often used to mainly achieve greater financial gains for individual members, rather than for society at large. We illustrate how the dearth of economic opportunities for domestic public has impacted perceptions of ‘nature’ advocated by the environmental activists, focussing specifically on national perceptions of ownership and the resulting actions appropriating ‘nature’ as a source for economic development, only tangentially attaining environmental outcomes on the way. The vision that the ‘environment’ is an economic resource allowed ENGO activists to cooperate with the domestic policymaking, while tapping international networks and donors for funding. Throughout the past decades they worked to secure their own and their members' particularistic economic interests and, as we demonstrate, remained disengaged from the political process and failed to develop broader reproach with publics.
Resumo:
Vascular cognitive impairment (VCI), including its severe form, vascular dementia (VaD), is the second most common form of dementia. The genetic etiology of sporadic VCI remains largely unknown. We previously conducted a systematic review and meta-analysis of all published genetic association studies of sporadic VCI prior to 6 July 2012, which demonstrated that APOE (ɛ4, ɛ2) and MTHFR (rs1801133) variants were associated with susceptibility for VCI. De novo genotyping was conducted in a new independent relatively large collaborative European cohort of VaD (nmax = 549) and elderly non-demented samples (nmax = 552). Where available, genotype data derived from Illumina's 610-quad array for 1210 GERAD1 control samples were also included in analyses of genes examined. Associations were tested using the Cochran-Armitage trend test: MTHFR rs1801133 (OR = 1.36, 95% CI 1.16-1.58, p = <0.0001), APOE rs7412 (OR = 0.62, 95% CI 0.42-0.90, p = 0.01), and APOE rs429358 (OR = 1.59, 95% CI 1.17-2.16, p = 0.003). Association was also observed with APOE epsilon alleles; ɛ4 (OR = 1.85, 95% CI 1.35-2.52, p = <0.0001) and ɛ2 (OR = 0.67, 95% CI 0.46-0.98, p = 0.03). Logistic Regression and Bonferroni correction in a subgroup of the cohort adjusted for gender, age, and population maintained the association of APOE rs429358 and ɛ4 allele.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.