3 resultados para HYPOBARIC HYPOXIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia caused by coronary artery disease and myocardial infarction leads to aberrant ventricular remodeling and cardiac fibrosis. This occurs partly through accumulation of gene expression changes in resident fibroblasts, resulting in an overactive fibrotic phenotype. Long-term adaptation to a hypoxic insult is likely to require significant modification of chromatin structure in order to maintain the fibrotic phenotype. Epigenetic changes may play an important role in modulating hypoxia-induced fibrosis within the heart. Therefore, the aim of the study was to investigate the potential pro-fibrotic impact of hypoxia on cardiac fibroblasts and determine whether alterations in DNA methylation could play a role in this process. This study found that within human cardiac tissue, the degree of hypoxia was associated with increased expression of collagen 1 and alpha-smooth muscle actin (ASMA). In addition, human cardiac fibroblast cells exposed to prolonged 1% hypoxia resulted in a pro-fibrotic state. These hypoxia-induced pro-fibrotic changes were associated with global DNA hypermethylation and increased expression of the DNA methyltransferase (DNMT) enzymes DNMT1 and DNMT3B. Expression of these methylating enzymes was shown to be regulated by hypoxia-inducible factor (HIF)-1α. Using siRNA to block DNMT3B expression significantly reduced collagen 1 and ASMA expression. In addition, application of the DNMT inhibitor 5-aza-2'-deoxycytidine suppressed the pro-fibrotic effects of TGFβ. Epigenetic modifications and changes in the epigenetic machinery identified in cardiac fibroblasts during prolonged hypoxia may contribute to the pro-fibrotic nature of the ischemic milieu. Targeting up-regulated expression of DNMTs in ischemic heart disease may prove to be a valuable therapeutic approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF) is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA) expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu). As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression.

METHODS: CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR) was used to examine the methylation status of the Thy-1 promoter.

RESULTS: Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2'-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2.

CONCLUSION: These data suggest that global and gene-specific changes in DNA methylation may play an important role in fibroblast function in hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing levels of tissue hypoxia have been reported as a natural feature of the aging prostate gland and may be a risk factor for the development of prostate cancer. In this study, we have used PwR-1E benign prostate epithelial cells and an equivalently aged hypoxia-adapted PwR-1E sub-line to identify phenotypic and epigenetic consequences of chronic hypoxia in prostate cells. We have identified a significantly altered cellular phenotype in response to chronic hypoxia as characterized by increased receptor-mediated apoptotic resistance, the induction of cellular senescence, increased invasion and the increased secretion of IL-1 beta, IL6, IL8 and TNFalpha cytokines. In association with these phenotypic changes and the absence of HIF-1 alpha protein expression, we have demonstrated significant increases in global levels of DNA methylation and H3K9 histone acetylation in these cells, concomitant with the increased expression of DNA methyltransferase DMNT3b and gene-specific changes in DNA methylation at key imprinting loci. In conclusion, we have demonstrated a genome-wide adjustment of DNA methylation and histone acetylation under chronic hypoxic conditions in the prostate. These epigenetic signatures may represent an additional mechanism to promote and maintain a hypoxic-adapted cellular phenotype with a potential role in tumour development.