47 resultados para HISTORICAL DATA-ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of the data from our Swedish-ESO Submillimetre Telescope molecular line survey in the 1.3 mm band of the N, M, and NW positions in the Sgr B2 molecular cloud. The line emissions from 42 molecular species, and some of their isotopomers, were analyzed assuming a single temperature and a homogeneous source. In cases where a source size much smaller than the antenna beam (23

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Time of flight (ToF) mass spectrometer suitable in terms of sensitivity, detector response and time resolution, for application in fast transient Temporal Analysis of Products (TAP) kinetic catalyst characterization is reported. Technical difficulties associated with such application as well as the solutions implemented in terms of adaptations of the ToF apparatus are discussed. The performance of the ToF was validated and the full linearity of the specific detector over the full dynamic range was explored in order to ensure its applicability for the TAP application. The reported TAP-ToF setup is the first system that achieves the high level of sensitivity allowing monitoring of the full 0-200 AMU range simultaneously with sub-millisecond time resolution. In this new setup, the high sensitivity allows the use of low intensity pulses ensuring that transport through the reactor occurs in the Knudsen diffusion regime and that the data can, therefore, be fully analysed using the reported theoretical TAP models and data processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims to use the multivariate geochemical dataset, generated by the Tellus project, to investigate the appropriate use of transformation methods to maintain the integrity of geochemical data and inherent constrained behaviour in multivariate relationships. The widely used normal score transform is compared with the use of a stepwise conditional transform technique. The Tellus Project, managed by GSNI and funded by the Department of Enterprise Trade and Development and the EU’s Building Sustainable Prosperity Fund, involves the most comprehensive geological mapping project ever undertaken in Northern Ireland. Previous study has demonstrated spatial variability in the Tellus data but geostatistical analysis and interpretation of the datasets requires use of an appropriate methodology that reproduces the inherently complex multivariate relations. Previous investigation of the Tellus geochemical data has included use of Gaussian-based techniques. However, earth science variables are rarely Gaussian, hence transformation of data is integral to the approach. The multivariate geochemical dataset generated by the Tellus project provides an opportunity to investigate the appropriate use of transformation methods, as required for Gaussian-based geostatistical analysis. In particular, the stepwise conditional transform is investigated and developed for the geochemical datasets obtained as part of the Tellus project. The transform is applied to four variables in a bivariate nested fashion due to the limited availability of data. Simulation of these transformed variables is then carried out, along with a corresponding back transformation to original units. Results show that the stepwise transform is successful in reproducing both univariate statistics and the complex bivariate relations exhibited by the data. Greater fidelity to multivariate relationships will improve uncertainty models, which are required for consequent geological, environmental and economic inferences.