8 resultados para HIGH-RESOLUTION COMPARATIVE GENOMIC HYBRIDIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative genomic hybridization (CGH) studies have demonstrated a high incidence of chromosomal imbalances in non-Hodgkin's lymphoma. However, the information on the genomic imbalances in Burkitt's Lymphoma (BL) is scanty. Conventional cytogenetics was performed in 34 cases, and long-distance PCR for t(8;14) was performed in 18 cases. A total of 170 changes were present with a median of four changes per case (range 1-22). Gains of chromosomal material (143) were more frequent than amplifications (5) or losses (22). The most frequent aberrations were gains on chromosomes 12q (26%), Xq (22%), 22q (20%), 20q (17%) and 9q (15%). Losses predominantly involved chromosomes 13q (17%) and 4q (9%). High-level amplifications were present in the regions 1q23-31 (three cases), 6p12-p25 and 8p22-p23. Upon comparing BL vs Burkitt's cell leukemia (BCL), the latter had more changes (mean 4.3 +/- 2.2) than BL (mean 2.7 +/- 3.2). In addition, BCL cases showed more frequently gains on 8q, 9q, 14q, 20q, and 20q, 9q, 8q and 14q, as well as losses on 13q and 4q. Concerning outcome, the presence of abnormalities on 1q (ascertained either by cytogenetics or by CGH), and imbalances on 7q (P=0.01) were associated with a short survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Deletions of chromosome 1 have been described in 7% to 40% of cases of myeloma with inconsistent clinical consequences. CDKN2C at 1p32.3 has been identified in myeloma cell lines as the potential target of the deletion. We tested the clinical impact of 1p deletion and used high-resolution techniques to define the role of CDKN2C in primary patient material.Experimental Design: We analyzed 515 cases of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and newly diagnosed multiple myeloma using fluorescence in situ hybridization (FISH) for deletions of CDKN2C. In 78 myeloma cases, we carried out Affymetrix single nucleotide polymorphism mapping and U133 Plus 2.0 expression arrays. In addition, we did mutation, methylation, and Western blotting analysis.Results: By FISH we identified deletion of 1p32.3 (CDKN2C) in 3 of 66 MGUS (4.5%), 4 of 39 SMM (10.3%), and 55 of 369 multiple myeloma cases (15%). We examined the impact of copy number change at CDKN2C on overall survival (OS), and found that the cases with either hemizygous or homozygous deletion of CDKN2C had a worse OS compared with cases that were intact at this region (22 months versus 38 months; P = 0.003). Using gene mapping we identified three homozygous deletions at 1p32.3, containing CDKN2C, all of which lacked expression of CDKN2C. Cases with homozygous deletions of CDKN2C were the most proliferative myelomas, defined by an expression-based proliferation index, consistent with its biological function as a cyclin-dependent kinase inhibitor.Conclusions: Our results suggest that deletions of CDKN2C are important in the progression and clinical outcome of myeloma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of  <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0  ±  0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates  >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key issue in pulse detonation engine development is better understanding of the detonation structure and its propagation mechanism. Thus, in the present work the turbulent structure of an irregular detonation is studied through very high resolution numerical simulations of 600 points per half reaction length. The aim is to explore the nature of the transverse waves during the collision and reflection processes of the triple point with the channel walls. Consequently the formation and consumption mechanism of unreacted gas pockets is studied. Results show that the triple point and the transverse wave collide simultaneously with the wall. The strong transverse wave switches from a primary triple point before collision to a new one after reflection. Due to simultaneous interaction of the triple point and the transverse wave with the wall in the second half of the detonation cell, a larger high-pressurised region appears on the wall. During the reflection the reaction zone detaches from the shock front and produces a pocket of unburned gas. Three mechanisms found to be of significance in the re-initiation mechanism of detonation at the end of the detonation cell; i: energy resealed via consumption of unburned pockets by turbulent mixing ii: compression waves arise due to collision of the triple point on the wall which helps the shock to jump abruptly to an overdriven detonation iii: drastic growth of the Richtmyer–Meshkov instability causing a part of the front to accelerate with respect to the neighbouring portions.