3 resultados para HD6095 .M17


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An array of schistosome endoproteases involved in the digestion of host hemoglobin to absorbable peptides has been described, but the exoprotease responsible for catabolising these peptides to amino acids has yet to be identified. By searching the public databases we found that Schistosoma mansoni and Schistosoma japonicum express a gene encoding a member of the M17 family of leucine aminopeptidases (LAPs). A functional recombinant S. mansoni LAP produced in insect cells shared biochemical properties, including pH optimum for activity, substrate specificity and reliance on metal cations for activity, with the major aminopeptidase activity in soluble extracts of adult worms. The pH range in which the enzyme functions and the lack of a signal peptide indicate that the enzyme functions intracellularly. Immunolocalisation studies showed that the S. mansoni LAP is synthesised in the gastrodermal cells surrounding the gut lumen. Accordingly, we propose that peptides generated in the lumen of the schistosome gut are absorbed into the gastrodermal cells and are cleaved by LAP to free amino acids before being distributed to the internal tissues of the parasite. Since LAP was also localised to the surface tegument it may play an additional role in surface membrane re-modelling. (C) 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.