12 resultados para HCI
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
Highly charged ions have been used to study the sputtering of positive molecular fragments from mercaptoundecanoic acid and dodecanethiol self-assembled monolayers on gold surfaces. The samples were bombarded with Arq+ (42n+, and Cn+1O2H2n + 1+ from mercaptoundecanoic and H+, CnH2n+, and Cn+1H2n + 3+ from dodecanethiol. The proton yields were increased with larger charge state q of the highly charged ion (HCI) in both samples, scaling as qgamma, with gamma~5. The charge state dependence is discussed in terms of electron transfer to the HCI. The final yield of protons depends on molecular functional group characteristics, orientation on the surface, and reneutralization phenomena.
Resumo:
Electron impact excitation collision strengths are required for the analysis and interpretation of stellar observations. This calculation aims to provide fine structure effective collision strengths for the Ni XVII ion using a method which includes contributions from resonances. A DARC calculation has been performed, involving 37 J pi states. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. The non-zero effective collision strengths for transitions between the fine structure levels are given for electron temperatures (T(e)) in the range log(10) T(e)(K) = 4.5 - 8.5. Data for several transitions from the ground state are discussed in this paper.
Resumo:
In this paper, a novel video-based multimodal biometric verification scheme using the subspace-based low-level feature fusion of face and speech is developed for specific speaker recognition for perceptual human--computer interaction (HCI). In the proposed scheme, human face is tracked and face pose is estimated to weight the detected facelike regions in successive frames, where ill-posed faces and false-positive detections are assigned with lower credit to enhance the accuracy. In the audio modality, mel-frequency cepstral coefficients are extracted for voice-based biometric verification. In the fusion step, features from both modalities are projected into nonlinear Laplacian Eigenmap subspace for multimodal speaker recognition and combined at low level. The proposed approach is tested on the video database of ten human subjects, and the results show that the proposed scheme can attain better accuracy in comparison with the conventional multimodal fusion using latent semantic analysis as well as the single-modality verifications. The experiment on MATLAB shows the potential of the proposed scheme to attain the real-time performance for perceptual HCI applications.
Resumo:
The development of computer-based devices for music control has created a need to study how spectators understand new performance technologies and practices. As a part of a larger project examining how interactions with technology can be communicated to spectators, we present a model of a spectator's understanding of error by a performer. This model is broadly applicable throughout HCI, as interactions with technology are increasingly public and spectatorship is becoming more common.
Resumo:
At the outset of a discussion of evaluating digital musical instruments, that is to say instruments whose sound generators are digital and separable though not necessarily separate from their control interfaces (Malloch, 2006), it is reasonable to ask what the term evaluation in this context really means. After all, there may be many perspectives from which to view the effectiveness or otherwise of the instruments we build. For most performers, performance on an instrument becomes a means of evaluating how well it functions in the context of live music making, and their measure of success is the response of the audience to their performance. Audiences evaluate performances on the basis of how engaged they feel they have been by what they have seen and heard. When questioned, they are likely to describe good performances as “exciting,” “skillful,” “musical.” Bad performances are “boring,” and those which are marred by technical malfunction are often dismissed out of hand. If performance is considered to be a valid means of evaluating a musical instrument, then it follows that, for the field of DMI design, a much broader definition of the term “evaluation” than that typically used in human-computer interaction (HCI) is required to reflect the fact that there are a number of stakeholders involved in the design and evaluation of DMIs. In addition to players and audiences, there are also composers, instrument builders, component manufacturers, and perhaps even customers, each of whom will have a different concept of what is meant by “evaluation.”
Extracting S-matrix poles for resonances from numerical scattering data: Type-II Pade reconstruction
Resumo:
We present a FORTRAN 77 code for evaluation of resonance pole positions and residues of a numerical scattering matrix element in the complex energy (CE) as well as in the complex angular momentum (CAM) planes. Analytical continuation of the S-matrix element is performed by constructing a type-II Pade approximant from given physical values (Bessis et al. (1994) [421: Vrinceanu et al. (2000) [24]; Sokolovski and Msezane (2004) [23]). The algorithm involves iterative 'preconditioning' of the numerical data by extracting its rapidly oscillating potential phase component. The code has the capability of adding non-analytical noise to the numerical data in order to select 'true' physical poles, investigate their stability and evaluate the accuracy of the reconstruction. It has an option of employing multiple-precision (MPFUN) package (Bailey (1993) [451) developed by D.H. Bailey wherever double precision calculations fail due to a large number of input partial waves (energies) involved. The code has been successfully tested on several models, as well as the F + H-2 -> HE + H, F + HD : HE + D, Cl + HCI CIH + Cl and H + D-2 -> HD + D reactions. Some detailed examples are given in the text.
Resumo:
This paper demonstrates a potential application for latent semantic analysis and similar techniques in visualising the differences between two levels of knowledge about a risk issue. The HIV/AIDS risk issue will be examined and the semantic clusters of key words in a technical corpora derived from specific literature about HIV/AIDS will be compared with the semantic clusters of those in more general corpora. It is hoped that these comparisons will create a fast and efficient complementary approach to the articulation of mental models of risk issues that could be used to target possible inconsistencies between expert and lay mental models.
Resumo:
The paper describes the design and implementation of a novel low cost virtual rugby decision making interactive for use in a visitor centre. Original laboratory-based experimental work in decision making in rugby, using a virtual reality headset [1] is adapted for use in a public visitor centre, with consideration given to usability, costs, practicality and health and safety. Movement of professional rugby players was captured and animated within a virtually recreated stadium. Users then interact with these virtual representations via use of a lowcost sensor (Microsoft Kinect) to attempt to block them. Retaining the principles of perception and action, egocentric viewpoint, immersion, sense of presence, representative design and game design the system delivers an engaging and effective interactive to illustrate the underlying scientific principles of deceptive movement. User testing highlighted the need for usability, system robustness, fair and accurate scoring, appropriate level of difficulty and enjoyment.