2 resultados para Growth promotion
Resumo:
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Resumo:
Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.