45 resultados para Grassland Ecosystems
Resumo:
Revealing the consequences of species extinctions for ecosystem function has been a chief research goal(1-7) and has been accompanied by enthusiastic debate(8-11). Studies carried out predominantly in terrestrial grassland and soil ecosystems have demonstrated that as the number of species in assembled communities increases, so too do certain ecosystem processes, such as productivity, whereas others such as decomposition can remain unaffected(12). Diversity can influence aspects of ecosystem function, but questions remain as to how generic the patterns observed are, and whether they are the product of diversity, as such, or of the functional roles and traits that characterize species in ecological systems. Here we demonstrate variable diversity effects for species representative of marine coastal systems at both global and regional scales. We provide evidence for an increase in complementary resource use as diversity increases and show strong evidence for diversity effects in naturally assembled com-munities at a regional scale. The variability among individual species responses is consistent with a positive but idiosyncratic pattern of ecosystem function with increased diversity.
Resumo:
We develop a new approach to modeling grazing systems that links foraging characteristics (intake and digestive constraints) with resource dynamics via the probability of encounter with different grass heights. Three complementary models are presented: the generation of a grass height structure through selective grazing; investigating the conditions for consumer coexistence; and, using a simplified resource structure, the consequences for consumer abundance. The main finding is that coexistence between grazers differing in body size is possible if a single-resource type becomes differentiated in its height structure. Large grazers can facilitate food availability for smaller species but with the latter being competitively dominant. The relative preference given to different resource partitions is important in determining the nature of population interactions. Large-body and small-body grazer populations can interact through competitive, parasitic, commensalist, or amensalist relationships, depending on the way they partition the resource as well as their relative populations and the dynamics of resource renewal. The models provide new concepts of multispecies carrying capacity (stock equilibrium) in grazed systems with implications for conservation and management. We conclude that consumer species are not substitutable; therefore, the use of rangeland management concepts such as "livestock units" may be inappropriate.
Resumo:
Human activity has undoubtedly had a major impact on Holocene forested ecosystems, with the concurrent expansion of plants and animals associated with cleared landscapes and pasture, also known as 'culture-steppe'. However, this anthropogenic perspective may have underestimated the contribution of autogenic disturbance (e.g. wind-throw, fire), or a mixture of autogenic and anthropogenic processes, within early Holocene forests. Entomologists have long argued that the north European primary forest was probably similar in structure to pasture woodland. This idea has received support from the conservation biologist Frans Vera, who has recently strongly argued that the role of large herbivores in maintaining open forests in the primeval landscapes of Europe has been seriously underestimated. This paper reviews this debate from a fossil invertebrate perspective and looks at several early Holocene insect assemblages. Although wood taxa are indeed important during this period, species typical of open areas and grassland and dung beetles, usually associated with the dung of grazing animals, are persistent presences in many early woodland faunas. We also suggest that fire and other natural disturbance agents appear to have played an important ecological role in some of these forests, maintaining open areas and creating open vegetation islands within these systems. More work, however, is required to ascertain the role of grazing animals, but we conclude that fossil insects have a significant contribution to make to this debate. This evidence has fundamental implications in terms of how the palaeoecological record is interpreted, particularly by environmental archaeologists and palaeoecologists who may be more interested in identifying human-environment interactions rather than the ecological processes which may be preserved within palaeoecological records.