67 resultados para Grass pollen


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present pollen records from three sites in south Westland, New Zealand, that document past vegetation and inferred climate change between approximately 30,000 and 15,000 cal. yr BP. Detailed radiocarbon dating of the enclosing sediments at one of those sites, Galway tarn, provides a more robust chronology for the structure and timing of climate-induced vegetation change than has previously been possible in this region. The Kawakawa/Oruanui tephra, a key isochronous marker, affords a precise stratigraphic link across all three pollen records, while other tie points are provided by key pollen-stratigraphic changes which appear to be synchronous across all three sites. Collectively, the records show three episodes in which grassland, interpreted as indicating mostly cold subalpine to alpine conditions, was prevalent in lowland south Westland, separated by phases dominated by subalpine shrubs and montane-lowland trees, indicating milder interstadial conditions. Dating, expressed as a Bayesian-estimated single 'best' age followed in parentheses by younger/older bounds of the 95% confidence modelled age range, indicates that a cold stadial episode, whose onset was marked by replacement of woodland by grassland, occurred between 28,730 (29,390-28,500) and 25,470 (26,090-25,270) cal. yr BP (years before AD, 1950), prior to the deposition of the Kawakawa/Oruanui tephra. Milder interstadial conditions prevailed between 25,470 (26,090-25,270) and 24,400 (24,840-24,120) cal. yr BP and between 22,630 (22,930-22,340) and 21,980 (22,210-21,580) cal. yr BP, separated by a return to cold stadial conditions between 24,400 and 22,630 cal. yr BP. A final episode of grass-dominated vegetation, indicating cold stadial conditions, occurred from 21,980 (22,210-21,580) to 18,490 (18,670-17,950) cal. yr BP. The decline in grass pollen, indicating progressive climate amelioration, was well advanced by 17,370 (17,730-17,110) cal. yr BP, indicating that the onset of the termination in south Westland occurred sometime between ca 18,490 and ca 17,370 cal. yr BP. A similar general pattern of stadials and interstadials is seen, to varying degrees of resolution but generally with lesser chronological control, in many other paleoclimate proxy records from the New Zealand region. This highly resolved chronology of vegetation changes from southwestern New Zealand contributes to the examination of past climate variations in the southwest Pacific region. The stadial and interstadial episodes defined by south Westland pollen records represent notable climate variability during the latter part of the Last Glaciation. Similar climatic patterns recorded farther afield, for example from Antarctica and the Southern Ocean, imply that climate variations during the latter part of the Last Glaciation and the transition to the Holocene interglacial were inter-regionally extensive in the Southern Hemisphere and thus important to understand in detail and to place into a global context. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV-fluorescence microscopy provides a powerful tool for the assessment of the coherence of pollen and organic-walled microfossil assemblages in situations where recycling or the intrusion of younger pollen is suspected. It also provides sensitive information about the thermal maturity of pollen, important for assessing whether material has been heated. Examples are given from the Palaeolithic sites at Barnham, Suffolk, UK; Stanton Harcourt, Oxfordshire, UK; High Lodge, Suffolk, UK; Niah Cave, Sarawak, Malaysian Borneo; and Holocene sites at Wadi Dana, Jordan; Milldale and Creswell, Derbyshire, UK; and Dooncarton Mountain, County Mayo, Republic of Ireland.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade Quaternary pollen analysis has developed towards improved pollen-taxonomical precision, automated pollen identification and more rigorous definition of pollen assemblage zones. There have been significant efforts to model the spatial representation of pollen records in lake sediments which is important for more precise interpretation of the pollen records in terms of past vegetation patterns. We review the difficulties in matching modelled post-glacial plant migration patterns with pollen-based palaeorecords and discuss the potential of DNA analysis of pollen to investigate the ancestry and past migration pathways of the plants. In population ecology there has been an acceleration of the widely advocated conceptual advance of pollen-analytical research from vaguely defined ‘environmental reconstructions’ towards investigating more precisely defined ecological problems aligned with the current ecological theories. Examples of such research have included an increasing number of investigations about the ecological impacts of past disturbances, often integrating pollen records with other palaeoecological data. Such an approach has also been applied to incorporate a time perspective to the questions of ecosystem restoration, nature conservation and forest management. New lines of research are the use of pollen analysis to study long-term patterns of vegetation diversity, such as the role of glacial-age vegetation fragmentation as a cause of Amazonian rain forest diversity, and to investigate links between pollen richness and past plant diversity. Palaeoclimatological use of pollen records has become more quantitative and has included more precise and rigorous testing of pollen-climate calibration models with modern climate data. These tests show the approximate nature of the models and warn against a too straightforward climatic interpretation of the small-scale variation in reconstructions. Pollenbased climate reconstructions over the Late Glacial–early Holocene boundary have indicated that pollen-stratigraphical changes have been rapid with no evidence for response lags. This does not rule out the possibility of migrational disequilibrium, however, as the rapid changes may be mostly due to nonmigrational responses of existing vegetation. It is therefore difficult to assess whether the amplitude of reconstructed climate change reflects real climate change. Other outstanding problems remain the obscure relationship of pollen production and climate, the role of human impact and other nonclimatic factors, and nonanalogue situations.