107 resultados para Gomez de Dussan, Beatriz
Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
Resumo:
Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.
Resumo:
This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.
Resumo:
The liquid phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been carried out over a graphite-supported iridium catalyst. The effect of reaction parameters such as temperature, pressure, concentration of reactant, the effect of addition of product to the feed and pre-reduction of the catalyst were studied. In situ pre-reduction of the catalyst with hydrogen had a very significant enhancing effect on the conversion of cinnamaldehyde and selectivity of the catalyst to cinnamyl alcohol. Kinetic analysis of the pre-reduced catalyst showed that the reaction is zero order with respect to cinnamaldehyde and first order with respect to hydrogen. The reaction follows an Arrhenius behaviour with an activation energy of 37 kJ mol(-1). Detailed analysis of the reaction showed that hydrogenation of the C=C double bond to give hydrocinnamaldehyde predominantly occurred at low conversions of cinnamaldehyde (